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Abstract

We evaluate tariffs’ effects in the US automobile market, accounting for global value
chains. The medium-run effects depend on manufacturers’ strategic responses and scale
economies. We develop a data-driven procedure which selects Cournot quantity-setting
with substantial scale economies as the best-fitting supply model. Counterfactuals re-
veal that 25% tariffs on imported cars induce pass-through slightly above one for foreign
manufacturers, while domestic firms decrease prices; adding parts tariffs increases do-
mestic prices by 6.5%. Consumer welfare losses double when tariffs extend to parts,
with total surplus losses exceeding $30 billion in 2018. We evaluate these losses against
employment gains in domestic manufacturing.
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1 Introduction

In the last decade, trade policy has reemerged as a dominant form of economic strategy, with
tariffs now serving as its primary instrument. In the US, both Trump administrations have
proposed and enacted tariffs on imported goods, prompting retaliatory measures that fur-
ther complicate international commerce. Analyzing these interventions requires understand-
ing how tariffs propagate through complex global value chains (Antrás and Chor, 2022),
particularly in industries where components may cross borders before reaching consumers.

The automobile industry exemplifies this complexity. Targeted for tariff intervention
by both Trump administrations, this sector features intricate production networks crossing
national borders. Foreign components constitute over 40% of US-assembled vehicles, while
US-made parts feature prominently in foreign-made cars. This web of interdependencies,
fostered by trade agreements like the North American Free Trade Agreement (NAFTA)
and its successor, the United States-Mexico-Canada Agreement (USMCA), creates layered
effects when tariffs are applied. In particular, both Trump administrations have threatened
stacked tariffs (tariffs applied to both final goods and intermediate inputs) on foreign-
assembled cars and foreign car parts used in domestic assembly, magnifying potential im-
pacts throughout the supply chain. The stated goals of such policies often involve reshaping
the geography of production to boost domestic employment. However, the high degree of
associated policy uncertainty tends to slow down investment (see, e.g., Caldara, Iacoviello,
Molligo, Prestipino, and Raffo, 2020; Handley and Limão, 2022), reducing firms’ ability to
relocate production. In turn, this makes it useful to assess the medium-run (i.e, a one year
time frame) effects of tariffs on consumers and firms while taking as given the locations of
production and market structure.

Such evaluation requires a methodological framework that accounts for two critical but
often neglected features of industry structure. First, the literature has long recognized
that firm conduct matters significantly for how trade policy affects market outcomes (Dixit,
1984; Brander and Spencer, 1985; Dixit and Grossman, 1986),1 as the degree of strategic
substitutability or complementarity guides domestic firms’ responses to foreign competitors’
tariff-induced price changes. Second, cost structures—particularly returns to scale—shape
these responses (see, e.g., Antràs, Fort, Gutiérrez, and Tintelnot, 2024), potentially allowing
domestic producers to reduce their costs as they gain market share following tariff imple-
mentation. Crucially, neither conduct nor cost structure is known a priori by researchers or
policymakers, calling for a data-driven approach to accurately predict the effects of policy.

We address these challenges by developing a new empirical framework and applying it
1See Head and Spencer (2017) for a discussion of how oligopoly models have been used in the international

trade literature over the last few decades. Bian, Head, and Orr (2025) show in simulations that oligopoly
conduct affects optimal trade policy.
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to the US automobile market using a uniquely comprehensive dataset. Our approach, while
building on a long line of related studies that use industrial organization (IO) tools to study
industry-specific trade policy (e.g., Goldberg, 1995; Berry, Levinsohn, and Pakes, 1999),
makes two key contributions. First, we assemble novel data that not only records equilibrium
outcomes but also tracks both country-model level production and the assembly location
and parts origin of every vehicle model sold in the US market. This granular information
on global value chains allows us to precisely model how stacked tariffs cascade through
production networks, affecting prices and welfare. Second, we develop an econometric
procedure for testing firm conduct that accommodates non-constant marginal costs—thus
going beyond existing methods (Backus, Conlon, and Sinkinson, 2021; Duarte, Magnolfi,
Sølvsten, and Sullivan, 2024) that typically assume away economies of scale despite their
importance in many manufacturing industries.

Leveraging state-of-the-art demand estimates from Grieco, Murry, and Yurukoglu (2024)
that credibly capture consumers’ substitution patterns, we find that Nash-Cournot quantity-
setting competition (hereafter Cournot) with substantial economies of scale best charac-
terizes the US automobile market. This finding aligns with institutional features of the
industry, where production targets are set well in advance and used in negotiations with
suppliers. In terms of scale economies, we estimate that a 10% increase in production re-
duces marginal costs by a bit more than 1%. This estimate is broadly in line with previous
literature, and has a meaningful effect on our counterfactual predictions.

When we simulate tariff scenarios under the conduct model and scale economies se-
lected by our framework, we find striking results that underscore the importance of both
accounting for global value chains and correctly modeling conduct and costs. Specifically,
we perform three counterfactuals in the 2018 US car market where we levy a 25% tariff on
(i) imported cars alone, (ii) imported cars and parts, and (iii) cars and parts imported to
the US as well as parts exported from the US for foreign assembly. In our first counterfac-
tual, levying a 25% tariff on imported cars causes the price of foreign-assembled vehicles to
increase by 24.2% while the price of US-assembled cars decreases by 0.9%. Adding tariffs on
imported parts fundamentally reverses these patterns. US-assembled cars, which initially
benefited from car-only tariffs, face substantial cost increases due to their reliance on im-
ported components, causing prices to rise by 6.5% rather than fall. This reversal highlights
the crucial importance of accounting for global value chains in policy evaluation. Foreign
car prices remain high but slightly lower than in the previous counterfactual (22.8%), as
some substitution back to foreign car models occurs. Reciprocal tariffs lead to further price
increases, driven by higher marginal costs for foreign manufacturers.

The predicted price effects illustrate the importance of learning the model of conduct
and cost when seeking to learn the pass-through of tariffs. In all three counterfactuals,
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we find that the pass-through of tariffs to the price of foreign-assembled cars under our
preferred model (Cournot competition with economies of scale) are close to but exceed one
(a 25% tariff increases the average port cost - analogous to a wholesale price - by 21.3%
under our model, but leads to a 24.2% increase in retail price). This finding is broadly
consistent with the empirical literature on the 2018 Trump administration tariffs: Amiti,
Redding, and Weinstein (2019), Fajgelbaum, Goldberg, Kennedy, and Khandelwal (2020),
Flaaen, Hortaçsu, and Tintelnot (2020), and Cavallo, Gopinath, Neiman, and Tang (2021)
document complete or near-complete pass-through of tariffs to import prices across a wide
range of products, with tariff-inclusive prices rising roughly one-for-one with tariff rates.
Furthermore, we find in our first counterfactual that pass-through of tariffs to domesti-
cally produced cars is negative under our preferred model. Instead, imposing the standard
assumption in the IO literature – Bertrand-Nash price competition (Bertrand, hereafter)
with constant marginal costs – implies a positive pass-through of tariffs to the prices of
domestically produced cars. These differences in pass-throughs have material implications
for the predicted effects of tariffs on profits and welfare.

Tariffs in this industry generate heterogeneous profit impacts across manufacturers based
on their integration in global value chains. With car-only tariffs, large importers like the
Volkswagen Group suffer disproportionate losses, while firms with mainly domestic produc-
tion using US parts, such as Tesla and Honda, see substantial gains. When parts tariffs
are added, firms with large US assembly operations but low US parts content face signifi-
cant losses instead. Reciprocal tariffs most severely impact manufacturers with production
strategies relying on foreign assembly using US parts.

Consumer welfare effects show similar heterogeneity and sensitivity to tariff structure.
With car-only tariffs, high-income consumers and foreign car buyers experience the largest
welfare losses, while buyers of US cars see small welfare gains on average due to price
decreases. Adding parts tariffs nearly doubles the overall welfare loss, with additional losses
now disproportionately falling on purchasers of American cars as their prices rise. Further
welfare losses from reciprocal tariffs are relatively small, highlighting the limited ability of
US trade partners to hurt the average American consumer in this market.

Aggregating these effects, we find substantial welfare losses that far outweigh government
revenue gains. Car-only tariffs result in a loss of combined consumer surplus and profits
of $31.4 billion, with only $13.5 billion offset by tariff revenue. Stacked tariffs on both
cars and parts nearly double the loss in total surplus from $18 billion to $31.6 billion in
2018. Notably, revenue from parts tariffs exceeds revenue from car tariffs, highlighting the
outsized importance of intermediate goods in global value chains. Reciprocal tariffs lead to
an additional net surplus loss of $3.6 billion.

Beyond these immediate welfare effects, we can extend our analysis to reveal additional
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consequences of tariffs, e.g., on manufacturing employment. While tariffs create domestic
jobs, generating approximately 107,000 jobs under car-only tariffs and 44,000 jobs under
the full reciprocal scenario, these gains come at a substantial cost, ranging from $168,000
to $876,000 per year in welfare loss per job created.

Our study is related to an important paper by Head and Mayer (2019), which also
analyzes counterfactual tariffs in the US auto market. Our approach differs in two key
dimensions, offering complementary evaluations of this policy. First, while they study long-
run effects allowing for global production reallocation and product entry or exit, we examine
medium-term impacts where market outcomes adjust but production locations and product
portfolios remain fixed. Second, while they model the global industry structure, we focus
exclusively on the US market with granular data on parts content, enabling a detailed
account of how stacked tariffs propagate through value chains.

Our medium-term approach follows other studies that evaluate trade policy using IO
methods in the automobile industry,2 including analyses of voluntary export restraints
(Goldberg, 1995; Berry et al., 1999) and tariff reductions (Fershtman, Gandal, and Markovich,
1999; Tovar, 2012).3 We contribute to this literature by pursuing greater flexibility on the
supply side—specifically addressing questions of firm conduct and cost structure raised by
earlier pioneering studies such as Feenstra and Levinsohn (1995) and Verboven (1996).
Rather than assuming a particular form of competition, we develop new methods to test
alternative models of conduct under non-constant marginal costs.

Methodologically, our paper expands the current conduct testing toolkit developed by
Backus et al. (2021) and Duarte et al. (2024) by accommodating non-constant marginal
costs in the Rivers and Vuong (2002) framework.4 This provides new tools for policy eval-
uation in industries characterized by economies of scale, and is portable to a wide range of
applications. We also develop novel insights regarding instrument relevance, showing that
the identification challenges highlighted by Bresnahan (1982) and Lau (1982) are specific
to homogeneous goods settings. Specifically, we build on the results in Dearing, Magnolfi,
Quint, Sullivan, and Waldfogel (2024) to show that the data on differentiated products
can be used to construct economically distinct instruments. By affecting market outcomes
through different economic channels, these instruments can both distinguish conduct and
identify the cost structure. This insight substantially broadens the set of relevant instru-
ments, making falsification of supply models feasible with standard industry data.

Recent studies have examined the impact of realized Trump-era tariffs (e.g., Amiti et al.,
2See Biesebroeck and Verboven (2025) for a comprehensive survey of empirical work on the automobile

industry.
3Verboven (1996), Goldberg and Verboven (2001), and Coşar, Grieco, Li, and Tintelnot (2018) study

related questions on international price discrimination and home-market advantage in the auto industry.
4Bian et al. (2025) propose an alternative testing approach, also under constant marginal cost.
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2019; Fajgelbaum et al., 2020; Flaaen et al., 2020; Cavallo et al., 2021). We focus specifically
on the automobile industry—a strategically important sector with a particularly complex
value chain—which was threatened with but ultimately not subjected to broad tariffs during
the first Trump administration. Within this industry, we are able to dissect the effect of
different counterfactual policies that target either assembled cars only, or also parts.

The paper proceeds as follows. In the next section, we present facts illustrating the
dependence of the US auto market on global value chains and our data sources. In Section
3, we introduce our empirical model of demand and supply. In Sections 4 and 5, we develop
a general method for distinguishing models of conduct allowing for non-constant marginal
costs and implement our testing procedure in the auto industry. Section 6 presents our
counterfactual analysis of tariff policies. Section 7 concludes.

2 Background and Data

2.1 The Threatened 2018 Auto Trade War

In May 2018, the Trump administration launched a Section 232 investigation into whether
automotive imports posed a threat to national security. The investigation potentially jeop-
ardized nearly $300 billion in imports, as the administration threatened to impose tariffs of
up to 25% on imported cars and auto parts. Despite significant concerns raised by industry
stakeholders and trading partners, the investigation continued through 2019. Ultimately,
broad tariffs on imported vehicles were never implemented during the first Trump admin-
istration, though the threat remained a source of uncertainty for the industry. The second
Trump administration has also threatened, imposed, and paused stacked tariffs on cars and
car parts.

Our research examines a counterfactual question: what effect would the earlier threat-
ened tariffs have had on welfare in the US automobile market in 2018? To understand the
potential impact, we must first recognize that the automotive industry is characterized by a
highly integrated global value chain, developed in part through free trade agreements such
as NAFTA and its successor, the USMCA. This integration creates complex effects when
tariffs are stacked on assembled vehicles and car parts: imported vehicles face direct tariff
levies, domestically assembled vehicles experience higher costs due to tariffs on imported
parts, and reciprocal measures by trading partners can further raise costs for manufac-
turers using US-made components abroad. Understanding these interconnections requires
granular data on both assembly locations and parts sourcing—information that becomes
available through mandatory automotive labeling requirements. We next examine the data
that allows us to quantify these forces, highlighting three key stylized facts that motivate
our modeling approach.
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2.2 Stylized Facts from Automotive Labeling Requirements

To understand how stacked tariffs would propagate through automotive value chains, we use
data collected by the National Highway Traffic Safety Administration (NHTSA) under the
American Automobile Labeling Act (AALA).5 The AALA requires vehicle window stickers
to display assembly location and parts sourcing information, including the percentage of
parts value produced domestically versus abroad.6 Combining AALA data with US car
sales data from Grieco et al. (2024), three main stylized facts emerge:

Fact 1: A Substantial Share of Cars Sold In the US Are Foreign-Assembled In
2018, foreign-assembled vehicles accounted for 39.5% of new car sales in the US. This means
that tariffs on assembled vehicles would affect a large portion of the market. These imports
originate from diverse locations: while traditional suppliers like Japan and Germany remain
important, Mexico has emerged as a major source, accounting for almost 10% of US car
sales.

Fact 2: US-Assembled Cars Rely Heavily on Imported Parts For vehicles assem-
bled in the United States, foreign parts represented, on average, 50% of total vehicle value
in 2018. This import dependence for intermediate inputs means that tariffs on auto parts
would significantly increase costs for domestic manufacturers. The reliance on imported
parts varies considerably across manufacturers and models, with many US-assembled vehi-
cles containing over 50% foreign content: parts tariffs would thus have differential effects
across domestic producers, depending on their supply chain strategies.

Fact 3: Foreign-Assembled Cars Rely Substantially on US Parts Cars assembled
abroad for the US market contain on average 9% US-made components. However, there is
substantial variation across countries of assembly: US parts constitute approximately 38%
of the value of Mexican car imports to the US (De Gortari, 2019). This reverse integration
means that reciprocal tariffs imposed by trading partners would harm US parts exporters
and could increase costs for foreign manufacturers selling in the US.

These three facts highlight the interdependencies in modern automotive production.
Building on these three facts, our counterfactual analysis will leverage our granular data to

5Other studies using this source include Klier and Rubenstein (2007) and Head, Mayer, and Melitz
(2024).

6Due to the high degree of economic integration between Canada and the US, the NHTSA considers
parts sourced from both these countries as domestic. We manually disentangle, for each car model produced
in 2018, the value of parts sourced from the US and Canada as follows. As transmissions and engines are
the two highest-value automotive parts, we find all the plants manufacturing these parts in Canada. We
then search for the car models that use the parts produced at these plants in their assembly.
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assess the counterfactual effects of car tariffs. To inform the model that will predict coun-
terfactual effects, we use a broader database on the US car industry, which we describe next.

2.3 Data

For equilibrium outcomes in the US automobile market and car model characteristics, we
rely on the dataset produced in Grieco et al. (2024). This dataset contains 5,046 car model-
year observations from 2002 to 2018. For each observation, we observe the manufacturer’s
suggested retail price (MSRP which we refer to as price throughout), sales, and product
characteristics, including size dimensions (height, width, length), curb weight, horsepower,
and fuel efficiency measured as miles per dollar (MPD) and miles per gallon (MPG). We
also observe the number of available trims for each model7 and the years since the current
design was introduced. We also observe the real exchange rate (RXR) for the country
of production. Vehicle segments in our data include sedans (42% of observations), Sport
Utility Vehicles (SUVs) (23%), trucks (7%), and vans (7%).

To the Grieco et al. (2024) dataset, we merge both the AALA data described above
and annual production data at the car model-country level from Marklines, an automotive
industry data provider. The Marklines data, available from 2002 onward, enables us to
capture economies of scale more comprehensively than previous studies of this market. Our
final dataset contains 3,929 observations at the car model-year level.

Table 1 presents summary statistics, which reveal two key features of the industry that
inform our modeling approach. First, the data exhibit substantial variation in production
scale, with annual production ranging from 8,000 units at the 25th percentile to 74,000
units at the 75th percentile. Sales also show considerable dispersion, with a mean of ap-
proximately 60,000 units but a maximum of 891,000 units annually. As economies of scale
could be an essential determinant of production costs, we must account for scale effects
when modeling firm behavior and predicting the effects of trade policy.

Second, the market displays important product differentiation. Prices average $39,000
with substantial variation, possibly reflecting not only cost differences but also significant
product differentiation across multiple dimensions. Vehicle characteristics vary considerably
- for example, horsepower ranges from 173 to 296 from the 25th to 75th percentile, while
fuel economy ranges from 17 to 23 miles per gallon; the average model offers 7 different trim
levels, with some popular models available in over 20 configurations. This multidimensional
differentiation may contribute to creating market power for manufacturers within their
product niches.

7Car models may have multiple “trim levels” - for example, the 2018 Toyota Camry was available as a
L, LE, SE, XLE, and XSE trim level, each with increasing numbers of options and higher price. The Grieco
et al. (2024) dataset, aggregates observations across trims.
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Table 1: Summary Statistics

Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max

Prices (thousands $) 39 16 13 27 46 100
Sales (thousands) 60 91 0.01 8.3 74 891
RXR 0.98 0.17 0.39 0.9 1.1 1.6
Height (inches) 64 8.1 45 57 69 107
Width (inches) 74 4 61 71 76 89
Length (inches) 190 18 106 179 200 274
Curb weight (lbs) 3,966 900 1,808 3,362 4,456 7,230
Horsepower 240 82 66 173 296 645
MPD 7.6 3.4 2.8 5.3 8.9 28
MPG 21 7.8 10 17 23 50
Number of trims 6.7 14 1 2 7 210
Years since design 4.2 1.9 3 3 5 12

Production by car model (thousands) - US made 166 167 2.7 47 249 1,023
Production by car model (thousands) - Foreign made 122 138 2.6 30 169 761

Number of car models per category 2002 2007 2013 2018

Sedan 51 89 146 150
SUV 39 82 94 106
Truck 17 18 12 10
Van 12 17 12 15

The table reports summary statistics for our new car sales sample with 3,929 car model-year observations
from 2002-2018. RXR is the real exchange rate for the country of production. MPD is miles per dollar,
calculated using contemporaneous local gas prices. MPG is miles per gallon.

Given this variation in scale and complex product differentiation, different assumptions
on cost functions and conduct (e.g., about whether firms compete on prices or quantities)
can lead to very different predictions about pass-through rates, production reallocations,
and consumer welfare effects after tariffs are levied. Thus, our empirical approach devel-
ops a testing procedure that evaluates alternative models of supply rather than imposing a
pre-selected one. As we seek to learn features of supply from the data, there are important
sources of variation that we can leverage. For instance, we observe significant variation over
time in the number of models per category: the SUV category grows dramatically in terms
of models offered (and sales), while the van category declines. This variation will be useful
for testing conduct.

3 Model

To capture the medium-run effects of tariffs on the US automobile market, we develop a
static equilibrium model of the industry. We discuss demand and supply in turn.
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3.1 Demand

We use the demand system estimated in Grieco et al. (2024). This state-of-the-art demand
system builds on seminal work on the auto industry (e.g. Berry, Levinsohn, and Pakes,
1995; Goldberg, 1995). The model allows for flexible substitution patterns, informed by
detailed microdata on consumer choices and second-choice survey responses.8 We provide
a brief summary here, which allows us to develop the notation used throughout the paper.
In what follows, for a generic variable ajt, at denotes a′jt stacked across products j within
market t and a denotes at stacked across markets t.

Firms offer a set of products Jt in each market t. Consumers in market t, indexed by i
receive indirect utility from each new car model j according to:

uijt = αitpjt + x′jtβit + ξjt + ϵijt.

Here, consumer utility depends on the product’s price pjt, a vector of observed car charac-
teristics xjt, an unobserved car attribute ξjt and an idiosyncratic shock ϵijt which is assumed
to follow a Type 1 extreme value distribution. The model permits rich and time-varying
consumer heterogeneity by allowing the preference parameters αit and βit to depend on
observed demographics and consumer-level shocks.9 Consumers maximize their utility by
choosing either a single car model or the outside option of no new car purchase, with the
utility of the latter varying over time (ηt will capture the average utility of the outside
good). The market share of each product in each market sjt takes on the familiar form:

sjt =

∫
exp(αitpjt + x′jtβit + ξjt)

exp ηt +
∑

k∈Jt exp(αitpkt + x′ktβit + ξkt)
dFt(i),

where Ft is the distribution of the random coefficients. Thus market shares stacked across
products in market t can be expressed as the function st = s

(
pt, xt, ξt, θ

D
0

)
where θD0 is the

vector of demand parameters. For a market t of size Mt, the equilibrium quantity of model
j is given as qjt =Mtsjt.

This demand specification produces realistic substitution patterns, with similar vehicle
styles serving as close substitutes and strong correlations between purchased and second-
choice vehicles in characteristics such as size, horsepower, and fuel economy. Given the
rigorous estimation strategy developed in Grieco et al. (2024) and their extensive microdata,
we adopt their parameter estimates as θD0 without modification.

8Head and Mayer (2023) find that CES and monopolistic competition can approximate a DGP with
BLP demand, Bertrand conduct and constant cost when the implied pass-through is close to one. In this
paper, we want to allow for flexible substitution patterns under alternative supply models.

9Importantly, αi contains both consumer-level income and income squared. This flexibility in the mixing
distribution helps alleviate the concerns about curvature raised by Birchall, Mohapatra, and Verboven (2024)
and Miravete, Seim, and Thurk (2025).
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3.2 Supply

The trade literature has shown that assumptions on the supply side—the imposed model
of conduct (see e.g., Dixit, 1984; Brander and Spencer, 1985; Dixit and Grossman, 1986;
Eaton and Grossman, 1986) and functional form of marginal costs (see e.g., Antràs et al.,
2024)—have ramifications for the effects of tariffs. Simulations in Bian et al. (2025) also
show that the oligopoly model crucially affects conclusions about optimal trade policy.
In empirical IO, researchers typically assume that firms face constant marginal costs and
compete according to Bertrand pricing. While these assumptions may hold in many settings,
there is reason to question whether they are appropriate for studying the US automobile
market. In particular, Berry et al. (1995) provide suggestive evidence that economies of
scale may exist in the assembly of cars. Furthermore, the long production lead times and
capacity constraints in automobile manufacturing suggest that output decisions may be
more rigid than prices; in the US market, Feenstra and Levinsohn (1995) and Berry et al.
(1999) consider alternatives to Bertrand pricing, which include Cournot quantity setting
and mixed models where some firms set prices and others set quantities.

Thus, instead of assuming a particular parametric model and using it to measure the
effect of tariffs, we seek to use the data to guide our assumptions on conduct and cost. To
do so, we begin with a general framework where the data in each market t are generated by
equilibrium play in some static model of supply where prices and quantities are endogenous.
A system of first-order conditions characterizes the true supply model,

pt = ∆0t + c0t,

where ∆0t = ∆0

(
pt, st, θ

D
0

)
is the true vector of markups in market t and c0t is the true

vector of marginal costs. Following Berry et al. (1995), Verboven (1996), Goldberg and
Verboven (2001), Coşar et al. (2018), and Grieco et al. (2024), we specify our model for the
log of marginal cost. Further, we assume a Cobb-Douglas production function,10 resulting
in the functional form in Berry et al. (1995), Verboven (1996), and Goldberg and Verboven
(2001):11

log(c0jt) = γ0 log(q
p
jt) + w′

jtτ0 + ω0jt, (1)

where wjt is a vector of observed cost shifters that affects the product’s marginal cost,
qpjt reflects the production quantity corresponding to the level at which economies of scale
accrue, and ω0jt is an unobserved shock.

The choice of qpjt deserves some discussion. In our main specification, we assume qpjt
10See Khmelnitskaya, Marshall, and Orr (2025) for a recent empirical approach that also allows for

economies of scope.
11While other papers have assumed constant marginal costs (e.g. Goldberg, 1995; Berry et al., 1999;

Van Biesebroeck, Gao, and Verboven, 2012), our functional form nests constant marginal cost.
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corresponds to the total production of model j in the country that supplies the US market
in year t. In this industry, this is similar to the assumption that economies of scale accrue
at the plant-model level: in the vast majority of cases, car models sold in the US are
sourced from one country (Head and Mayer, 2019), and produced in a single plant in that
country. Our assumption stands between the approaches that scale economies accrue from
global production across countries for a model (Verboven, 1996; Goldberg and Verboven,
2001), and those that assume “external” scale economies across all models produced by a
firm within a country (Head and Mayer, 2019). We explore the robustness of our results to
alternative assumptions in Appendix D.3, including platform-level economies of scale (which
captures economies of scope among car models using the same engineering platform) and
log-linear and quadratic functional forms.

Because the true markups (or, equivalently, true costs) are unobserved in the market for
cars, we want to determine the supply model that best fits the data from a menu of candi-
dates motivated by the literature. Distinguishing supply models requires instruments (see
e.g., Berry and Haile, 2014; Dearing et al., 2024). We therefore maintain that instrumental
variables zjt exist such that, for the true model, the exclusion restriction E[ω0jt | wjt, zjt] = 0

holds. This assumption requires that the instruments are exogenous for supply, and there-
fore uncorrelated with the unobserved cost shifters for the true model. Berry and Haile
(2014) provides standard sources of exogenous variation, such as variation in the set of
rival firms and rival products, own and rival product characteristics, rival cost, and market
demographics. These variables are available in our dataset and we now explore how they
can be used to distinguish models of conduct under economies of scale.

4 Testing Conduct With Non-Constant Marginal Cost

Our application requires distinguishing between models of firm conduct while accounting
for economies of scale in production. To do so, we must address two limitations in the IO
literature. First, current testing methods (Backus et al., 2021; Duarte et al., 2024) assume
constant marginal costs. Second, credible inference on conduct depends on instrument se-
lection; while this problem is well understood under constant marginal costs (Dearing et al.,
2024), concerns remain about finding relevant instruments when relaxing this assumption.
Bresnahan (1982) and Lau (1982) demonstrate that homogeneous product markets require
specific demand-rotating instruments to distinguish monopoly from perfect competition.
Therefore, even if we extend the testing procedure to accommodate non-constant marginal
cost, it is not immediate from the literature that the exogenous variation in standard dif-
ferentiated products datasets like ours will distinguish models of conduct in practice.

We address these two concerns in this section. First, we propose a general procedure
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to test models of conduct while also estimating economies of scale, which we apply to
the car market in Section 5. Our procedure extends the methodology of Duarte et al.
(2024), which adapts the RV non-nested model selection test (Rivers and Vuong, 2002) to
implement the falsifiable restrictions of Berry and Haile (2014). This approach is appropriate
because our candidate supply models are non-nested12 and the RV test offers advantages
over model assessment alternatives. Second, we examine instrument relevance for the RV
test in our differentiated products setting with economies of scale. We argue that in such
markets there is a broader set of potentially relevant instruments than in homogeneous
products contexts, as researchers can leverage cross-product variation in cost and product
characteristics unavailable in Bresnahan (1982). This insight makes testing conduct models
under non-constant marginal cost feasible with standard datasets like ours. While we focus
on the specific cost function in Equation (1), adopted for our application, Appendices A
and B broaden our procedure and guidance for instrument relevance beyond this specific
case.

4.1 Our General Procedure

Step 0. Construct Menu of Models: The researcher specifies plausible candidate
models of conduct based on institutional knowledge. Our procedure applies to static conduct
models where, for each model m, prices and quantities in market t satisfy model-specific
first-order conditions:

pt = ∆mt + cmt (2)

where ∆mt is the vector of implied markups under model m in market t and cmt is the
vector of implied marginal costs.13

Step 1. Obtain Implied Markups and Marginal Costs Under Each Model: For
each model we consider, ∆mt can be expressed as a function of data and demand primitives.
Thus, given data on equilibrium outcomes and the demand estimates (such as those in Grieco
et al. (2024) for our application), ∆mt can be computed in each market and the implied
costs cmt can be recovered as cmt = pt −∆mt.

As an example, consider the canonical Bertrand pricing model, or m = B. The implied
markups stacked across products j in market t can be expressed as:

∆Bt = −(Ωt ⊙D′
t)
−1st,

12Even with nested models, testing can be preferred to estimation; see Magnolfi and Sullivan (2022).
13For the first-order conditions of any model m to characterize a well-defined empirical model, we require

there exists a unique equilibrium, or the equilibrium selection rule is such that the same pt arises whenever
the vector (cmt, xt, ξt) is the same, analogous to Assumption 13 in Berry and Haile (2014).
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where Ωt is the ownership matrix in market t whose (j, k)-th element is an indicator that
products j and k are produced by the same firm, Dt is the matrix of demand derivatives
whose (j, k)-th element is ∂sjt

∂pkt
, and st is the vector of market shares. The symbol ⊙ denotes

Hadamard (element-wise) multiplication.

Step 2: Estimate Model-Implied Scale Economies and Cost Shocks Given the
vector of implied markups ∆mt and implied marginal costs cmt = pt−∆mt, we can estimate
the marginal cost function implied by model m:

log (cmt) = γm log(qpjt) + w′
jtτm + ωmjt. (3)

Remark 1. Compared to the case of constant marginal costs, the right-hand side of (3) con-
tains endogenous log quantities. Thus, estimating γm and τm requires the use of instruments
and estimation via two-stage least squares (2SLS).

We pin down the parameters in marginal cost as solutions to the standard two-stage
least squares (2SLS) moment equations E[wjtωmjt] = 0 and E[q̃jtωmjt] = 0 where q̃jt is the
best linear predictor of log quantities using cost shifters and instruments,

q̃jt = (z′jt,w
′
jt)E

[
(z,w)′(z,w)

]−1
E
[
(z,w)′ log(qp)

]
.

This leads to standard 2SLS definitions of the parameters γm and τm,(
γm

τm

)
= E

[
(q̃,w)′(log(qp),w)

]−1
E
[
(q̃,w)′ log (p−∆m)

]
.

The implied cost shocks ωmjt, recovered as the 2SLS projection errors, rationalize the
observed equilibria (pt, st) under model m in market t.

Step 3. Construct Measure of Lack-of-Fit for Each Model: For the true model, we
know that E[ω0jt | wjt, zjt] = 0. Therefore, given that we have recovered the model-implied
cost shocks ωmjt, we can define a measure of lack-of-fit based on the moment condition
E[zjtωmjt] = 0, which will hold if model m is the correct model.

Remark 2. Pinning down the economies of scale parameter uses part of the variation in zjt.
Thus, the key deviation from the constant marginal cost case is that the effective instrument
only contains dz − 1 (instead of dz) sources of linearly independent variation.

For example, if zjt is a scalar, then the cost function would be exactly identified and, by
definition, the variation in zjt would be orthogonal to ωmjt for any model. It is therefore
useful to form our measure of lack-of-fit using only the variation that remains in the instru-
ments after pinning down the cost function. This remaining variation in the instruments,
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denoted zejt, is the error in zjt from a population projection on wjt and q̃jt,

zejt = zjt − E
[
z′ (q̃,w)

]
E
[
(q̃,w)′ (q̃,w)

]−1

(
q̃jt

wjt

)
.

We consider the following generalized method of moments (GMM) objective function as our
measure of lack-of-fit for a model m,

Qm = g′mWgm,

where gm = E[zejtωmjt]. In analogy with Duarte et al. (2024), the weight matrix is based on
the dz × dz covariance matrix E[zejtz

e′
jt]. However, ze is obtained by residualizing z against

a linear combination of its elements, i.e., q̃. As the rank of E[zejtz
e′
jt] is dz − 1, we use as the

weight matrix the Moore-Penrose inverse,14 W = E[zejtz
e′
jt]

+. Notice that, if E[zejtωmjt] = 0,
modelm is indistinguishable from the true model and Qm = 0. Otherwise, if E[zejtωmjt] ̸= 0,
the instruments distinguish model m from the truth and Qm > 0.

Step 4. Run RV Test, Obtain Model Confidence Set: For each model m, we have a
measure of fit Qm = E[zejtωmjt]

′WE[zejtωmjt]. To make inferences about conduct, we adopt
the non-nested model selection test in Rivers and Vuong (2002). We consider all pairs of
models from our menu and, for each, we run the pairwise RV test of models m = 1, 2. The
null hypothesis for the test is that the two competing models of conduct have the same fit,

HRV
0 : Q1 = Q2.

Relative to this null, we define two alternative hypotheses corresponding to cases of better
fit of one of the two models:

HRV
1 : Q1 < Q2 and HRV

2 : Q2 < Q1.

With this formulation of the null and alternative hypotheses, the statistical problem is to
determine which of the two models has the best fit, or equivalently, the smallest lack of fit.

For the GMM measure of fit, the RV test statistic is then

TRV =

√
n(Q̂1 − Q̂2)

σ̂RV
,

where Q̂m is a sample analog of Qm and σ̂2RV is an estimator for the asymptotic variance of
the scaled difference in the measures of fit appearing in the numerator of the test statistic.
We denote this asymptotic variance by σ2RV.

Remark 3. Since the estimation of γm is accounted for in constructing Qm, no adjustments
14Equivalently, one may redefine z

e to only include dz − 1 of the residualized instruments, where the
dropped instrument can be any instrument with a non-zero coefficient in q̃. In doing so, one obtains full
rank of E[z

e
jtz

e′
jt] and can let W = E[z

e
jtz

e′
jt]

−1.
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are needed for Q̂m, defined in Appendix B. In constructing σ̂2RV, it is important to account
for estimation of the linear predictor q̃, which we do by modifying the variance estimator
of Duarte et al. (2024) in Appendix B.

For a menu of two models, there is one RV test statistic and a researcher can conclude for
a model if the test rejects in favor of that model. For more than two models, the researcher
obtains multiple RV test statistics. For instance, in our application, the menu contains five
candidate models, meaning that we have ten unique pairs, leading to ten RV test statistics.
To adjust for multiple testing, Duarte et al. (2024) shows how all the pairwise TRV statistics
can be used to construct a model confidence set.

Step 5. Construct F -statistic to diagnose weak instruments for testing: For each
pair of models, the RV test statistic, TRV, is asymptotically standard normal under the null
as long as the estimator of the asymptotic variance converges in probability to σ2RV > 0.
If instead σ2RV = 0, the RV test is said to be degenerate, which Duarte et al. (2024) char-
acterizes as a problem of irrelevant instruments for testing. Near the space of degeneracy,
instruments may be weak, resulting in size distortions or low power. Duarte et al. (2024)
provides a diagnostic for both size distortions and low power. Their diagnostic relies on a
joint F -statistic of two “first stage” regressions, ωmjt = z′jtπm + emjt for model m = 1, 2

in the pair being tested. They then provide critical values for worst-case size and maximal
power to which the F -statistic can be compared in order to diagnose instrument strength.

Here, given that our measure of fit is formed with the residual variation in the instru-
ments ze, we modify the weak instruments diagnostic as a scaled F -statistic for a joint test
of the hypotheses H0m : πm = 0 for m = 1, 2 in the regressions

ωmjt = ze′jtπm + emjt with E[zejtemjt] = 0 for model m = 1, 2. (4)

Remark 4. To appropriately diagnose instrument strength, one can compare our F -statistic
to the same critical values for size and power as reported in Duarte, Magnolfi, Sølvsten,
Sullivan, and Tarascina (2022) with the value for the number of instruments being dz − 1.

This remark holds because our modified RV test statistic TRV and F -statistic converge
to the same joint distribution as in Proposition 4 of Duarte et al. (2024) with dz being
adjusted to dz − 1. Appendix B proves this and provides the definition of the F -statistic
for our setting.

4.2 Instrument Relevance for Testing Conduct with Economies of Scale

The procedure outlined in Section 4.1 relies on the presence of relevant instruments to
obtain sharp inference on conduct. In light of the discussion in Bresnahan (1982) and Lau
(1982) for the homogeneous product case, a researcher may fear that such instruments are
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difficult to form in practice, and special variation (such as rotation of demand) is needed to
distinguish models of conduct in the presence of economies of scale. Thus, we investigate
in this subsection what requirements instruments need to satisfy to be relevant for testing
conduct in differentiated products settings such as the one in our application.

To develop an intuitive, but still practical, discussion, we consider a simplified envi-
ronment where the true model of conduct is Bertrand, and the researcher wants to test
Bertrand and Cournot. We further suppress the observed cost shifters, so that for either
model log(cmj) = γm log(qpjt) + ωmjt. Appendix A develops instead formal results for rele-
vance under general economies of scale, and for a broader range of models.

The literature has considered relevance when testing models under constant marginal
cost. Dearing et al. (2024) establish that instruments are relevant in this case if the fea-
tures of pass-through matrices the instruments target differ across models. Thus, for the
logit class of demand systems, one single instrument formed with standard sources of vari-
ation (e.g., product characteristics and rival cost shifters) satisfies the requirement for the
Bertrand and Cournot models. Here we show that there are two additional requirements
for instrument relevance.

Remark 5. A single instrument z(1)jt is irrelevant for testing any pair of models of conduct
with economies of scale.

If the researcher has a single available instrument, then in Step 2 of our procedure the
2SLS estimator for economies of scale would be given by the sample analogue of

γ(1)m = E[z
(1)
jt log(qpjt)]

−1E[z
(1)
jt log(pjt −∆mjt)].

Because γm is just-identified, it follows that the implied 2SLS errors satisfy E[ωmjtz
(1)
jt ] = 0.

When forming a measure of lack of fit in Step 4, the researcher only has one instrument and
thus has to form Qm with the same z(1). Mechanically, then, without an overidentifying
restriction, Qm = 0 for any model m, and the RV test is degenerate with F = 0.

Remark 6. Two instruments z(1)jt and z
(2)
jt must be economically distinct to be relevant for

testing model m against the true model, which we define as

E[z
(1)
jt log(pjt −∆mjt)]

E[z
(2)
jt log(pjt −∆mjt)]

̸=
E[z

(1)
jt log(qpjt)]

E[z
(2)
jt log(qpjt)]

. (5)

This requirement, which generalizes the results in Lau (1982), rules out that the two
instruments have the same correlation with log of production quantities and with log of
the implied costs under model m. As long as the two instruments correspond to sources of
variation that have different economic effects, this statistical condition will generally hold.

To see where this condition comes from, suppose a researcher estimates economies of
scale with one of the instruments z(k) for k = 1, 2, recovering ω

(k)
mjt as the error. While
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mechanically E[z
(k)
jt ω

(k)
mjt] = 0, the researcher can use E[z

(−k)
jt ω

(k)
mjt] to form a measure of fit

Q(−k)
m . If each instrument, however, implies the same economies of scale, then ω

(1)
jt = ω

(2)
jt .

It follows then that E[z
(−k)
jt ω

(k)
mjt] = E[z

(−k)
jt ω

(−k)
mjt ] = 0, and the instruments are irrelevant

for testing any model m. The condition in (5) ensures that the economies of scale separately
measured with the two instruments are different, thus preventing this mechanical channel
for irrelevance.

Remark 7. Standard datasets from differentiated product markets typically contain eco-
nomically distinct instruments.

In the representative-firm homogeneous goods setting in Bresnahan (1982), there are no
rival firms and products, so that variation that both shifts and rotates the inverse demand
curve—which can be achieved by a demand rotator—is the only relevant source of variation.
With product differentiation, observing distinct product characteristics and cost shifters
across firms provides sources of economically distinct instruments. For instance, in a market
with two single-product firms and logit demand, economically distinct pairs leverage cross-
firm/product variation. Examples include pairing an own product characteristic with a rival
cost shifter, or pairing an own and a rival product characteristic. Not all instrument pairs
work, however. Economically indistinct pairs use variation within the same firm/product.
These include two cost shifters of the same rival, two characteristics of the same product,
or a characteristic and cost shifter from the same rival.

Taken together, we have developed a general and portable procedure to test conduct
under non-constant marginal cost. Appendix A includes a more formal discussion of the
economic determinants of instrument relevance for more general models of conduct and cost
functions. Appendix C develops a set of Monte Carlo simulations to illustrate the procedure
in practice and the role of instrument relevance. We now turn to implement the procedure
in the market for US automobiles

5 Implementing Our Procedure in the Market for Cars

Step 0. Construct Menu of Models: We consider a menu of five different models of
firm conduct, motivated by Feenstra and Levinsohn (1995) and Berry et al. (1999).

1. Bertrand pricing: All car manufacturers choose prices to maximize profits taking
competitors’ prices as given

2. Cournot quantity setting: All car manufacturers choose quantities of each car model
to sell, prices adjust to clear market

3. Mixed Model: Subset of manufacturers B set prices, remaining subset C set quantities.

3.1 B: Asian firms, C: US and European firms
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3.2 B: US firms, C: Asian and European firms

3.2 B: European firms, C: Asian and US firms

While Bertrand pricing is a standard assumption in the empirical IO literature, in the
market for cars Feenstra and Levinsohn (1995) and Berry et al. (1999) have also considered
Cournot conduct and “mixed” models where some manufacturers compete in prices while
others compete in quantities. This specification reflects potential asymmetries between
manufacturers - for instance, firms with more flexible production systems may be better
positioned to compete on price, while those with rigid capacity may effectively compete
in quantities. We build from Feenstra and Levinsohn (1995)’s results and consider three
mixed models based on manufacturers’ nationality (American, Asian, and European); (i)
only Asian Manufacturers play Bertrand, (ii) only American manufacturers play Bertrand,
and (iii) only European manufacturers play Cournot.15

Step 1. Obtain Implied Markups and Marginal Costs Under Each Model: For
each model m we consider, ∆mt can be computed in each market from the data on equilib-
rium outcomes and the demand estimates in Grieco et al. (2024). The implied costs can be
recovered as cmt = pt −∆mt.

Specifically, for Bertrand pricing, the stacked markups for each product j in market t
can be expressed as:

∆Bt = −(Ωt ⊙D′
t)
−1st,

where Ωt is the ownership matrix and Dt is the matrix of demand derivatives as defined in
section 4.1. Under Cournot competition, the implied markups take a similar form given as:

∆Ct = −(Ωt ⊙ (D−1
t )′)st. (6)

To define the implied markups for the mixed models, we first establish some notation.
For any matrix AMt, we order Bertrand and Cournot players in market t, and partition

AMt =

[
ABBt ABCt

ACBt ACCt

]
.

Markups for the mixed model are thus:

∆Mt =

[
−(ΩCCt ⊙ (D−1

CCt)
′)sCt

−(ΩBBt ⊙ (D′
BCt(D

−1
CCt)

′D′
CBt +D′

BBt))
−1sBt

]
where subscript C denotes firms competing in quantities and B denotes firms competing in
prices.

15Using data for 1987, Feenstra and Levinsohn (1995) find evidence for a Nash equilibrium where American
firms choose prices, European firms choose quantities, and Japanese firms choose either prices or quantities.
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In Figure 1, Panel A we illustrate the distribution of markups (expressed as Lerner
index ∆mjt

pjt
) in our data for the five candidate models. In line with theory (Magnolfi, Quint,

Sullivan, and Waldfogel, 2022), Cournot conduct implies higher markups than Bertrand,
and mixed models imply markups between these two extremes. While the different conduct
assumptions yield different levels of markups, they all imply similar declining trends over
time, in line with the findings of Grieco et al. (2024). Specifically, across all specifications
we find declining markups from 1980 to 2018, consistent with the Bertrand case—this is
shown in Figure 1, Panel B.

Figure 1: Markup Implications of Models of Conduct

Panel A. Distribution of Markups
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Figure illustrates the distribution of implied markups corresponding to different models (panel A), and the
evolution of average markups over time (panel B).

We further explore the implications of conduct by examining in Table 2 the Bertrand
and Cournot markups for the four best-selling models in the sedan, SUV, truck, and van
categories. Across these car models, Bertrand markups are 4-13 percentage points below
Cournot markups, which is substantial in this industry.

Step 2: Estimate Model-Implied Scale Economies and Cost Shocks To estimate
the model-implied economies of scale, we need to specify a marginal cost function and
construct instruments.

Instrument Choice: We construct instruments that satisfy our requirements for economic
distinctness developed in Section 4.2. Following the insights from that section and from
Appendix A, we select four sets of instruments that affect market outcomes through differ-
ent economic channels, ensuring they generate distinct patterns of response in quantities
and markup differences across models of conduct.
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Table 2: Model-Implied Markups for Top Car Models by Segment

Sedans SUVs

Car Model Bertrand Cournot Car Model Bertrand Cournot

Toyota Camry 23.1 28.7 Toyota RAV4 21.6 28.5
Honda Civic 28.7 33.7 Nissan Rogue 21.9 26.8
Honda Accord 20.7 24.3 Honda CR-V 20.1 24.8
Toyota Corolla 30.2 37.4 Chevrolet Equinox 23.8 32.8

Trucks Vans

Car Model Bertrand Cournot Car Model Bertrand Cournot

Ford F Series 18.8 31.6 Dodge Caravan 26.4 37.7
Chevrolet Silverado 17.8 31.5 Ford Transit 21.2 32.8
Ram Pickup 15.1 24.6 Chrysler Pacifica 25.8 36.4
Toyota Tacoma 23.4 29.7 Honda Odyssey 17.1 21.6

The table displays estimated markups (as Lerner indices, ∆mjt/pjt) in percent units under Bertrand and
Cournot conduct assumptions for the top-selling car models in each vehicle segment during 2018.

Our first instrument leverages market structure variation through the number of rival
models within the segment (sedan, SUV, truck, van). This captures the level of competitive
intensity, which impacts markups via demand and strategic interactions. The second set of
instruments exploits variation in consumer demographics by using the average income and
age, which affect consumers’ price sensitivity, and thus demand. The third instrument is
an SUV indicator interacted with a time trend. This instrument is particularly valuable
for identifying economies of scale since it predicts demand-driven variation in production
volumes over time within this growing segment. The fourth instrument is the average real
exchange rate (RXR) of rivals. As demonstrated in Grieco et al. (2024), exchange rates for
the country of assembly serve as effective cost shifters. Our segment-level aggregation gen-
erates opponent cost-shifter variation that differs fundamentally from own-product demand
shifters.

These instruments satisfy our economic distinctness requirement because they operate
through separate channels: market structure (intensity of competition), consumer prefer-
ences (demographic-driven taste), product-specific demand trends (SUV evolution), and
rivals’ production costs (exchange rate effects). Therefore, this diverse set of instruments
generates the variation needed to separately identify economies of scale and distinguish
between alternative models of conduct, as required by our theoretical framework.

Economies of Scale Estimates: Following Grieco et al. (2024), we specify the vector of
cost shifters wjt to include the exchange rate, a quadratic time trend, the log of continu-
ous characteristics (height, footprint, horsepower, miles per gallon, curbweight, number of
trims), and indicators for release year, segment, electric, sport, luxury, years since design,
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and manufacturer fixed effects. Table 3 presents 2SLS estimates of the economies of scale
parameter γm under different models of conduct while Table 11 in Appendix D.1 reports
full regression results. Appendix Table 15 explores the robustness of these estimates to al-
ternative cost specifications, including platform-level economies of scale and log-linear and
quadratic functional forms.

Table 3: Economies of Scale Estimates

Model m γm Estimate Standard Error

Bertrand −0.119 0.032
Cournot −0.114 0.033
Mixed (Asian firms Bertrand) −0.115 0.032
Mixed (US firms Bertrand) −0.116 0.032
Mixed (European firms Cournot) −0.118 0.032

The table reports estimates of parameter γm obtained by estimating Equation (3) via 2SLS under different
models of conduct m (reported in different rows). All specifications include cost shifters and fixed effects
(see Table 11 for full regression results). Standard errors are clustered by car model.

The estimates suggest meaningful economies of scale across all specifications, with scale
elasticities ranging from −0.114 to −0.119. The magnitude of the economies of scale es-
timates is stable across different conduct assumptions, suggesting this finding is robust to
how we model competitive interaction. These results are broadly in line with other findings
in the literature: Fuss and Waverman (1990) find a coefficient of −0.07, Verboven (1996)
finds −0.11 (essentially identical to our finding), while Goldberg and Verboven (2001) find
−0.006 to −0.03, although the authors point out that these estimates may be attenuated
due to the presence of a quota.16 The finding of economies of scale is also consistent with
industry evidence of economies of scale in car assembly and parts manufacturing.17

Steps 3-5. Conduct Testing: We implement the testing procedure to evaluate our
different models of conduct. Table 4 presents the results.

The test results favor the model where all firms engage in Cournot competition. This
model is included in the model confidence set with a p-value of 1.00, while all other specifica-
tions are rejected. Although the instruments lack power for some model pairs (as indicated
by the F -statistics), they are sufficiently strong overall to deliver reliable inference, yielding
a model confidence set containing only one model.

The finding that the Cournot model best fits the data in this market is consistent with
several features of this industry. First, it can approximate yearly production targets, with

16In the trade literature, Head and Mayer (2019) find a coefficient for external scale economies of −0.035,
while Bartelme, Costinot, Donaldson, and Rodriguez-Clare (2025) estimate an external scale elasticity for
motor vehicle production of −0.16.

17For example, Doner, Noble, and Ravenhill (2021) state: “By 2023, profitable economies of scale [require]
annual sales of 1 million vehicles using a given platform and 300,000 units for engines.”
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Table 4: Conduct Test Results

Models 1 2 3 4 5 MCS p-values

Panel A: Test Results (TRV )
1. Bertrand 3.05 1.75 1.19 −0.84 0.005

2. Cournot −3.16 −2.89 −3.18 1.000

3. B: Asia, C: US, EU −1.27 −2.06 0.007

4. B: US, C: Asia, EU −1.90 0.004

5. B: Asia, US, C: EU 0.009

Panel B: F -Statistics
1. Bertrand 14.8 13.6 6.4

†
7.2

†

2. Cournot 16.9 13.4 14.2

3. B: Asia, C: US, EU 10.5 11.9

4. B: US, C: Asia, EU 6.1
†

5. B: Asia, US, C: EU

Panels A-B report the RV test statistics T
RV and the effective F -statistic for all pairs of models, and the

MCS p-values. A negative RV test statistic suggests a better fit of the row model. F -statistics indicated
with † are below the appropriate critical value for best-case power above 0.95. With MCS p-values below
0.05 a row model is rejected from the model confidence set. Both T

RV and the F -statistics account for
clustering at the market level.

prices that adjust via dealers incentives (e.g., Tremblay, Tremblay, and Isariyawongse, 2013).
Moreover, choosing quantities facilitates parts sourcing. Finally, capacity constraints are
salient for automobile manufacturing and Cournot can approximate a two-stage capacity
and price competition game (Kreps and Scheinkman, 1983; Hendel, 1994).

6 Evaluating Tariffs

We now want to evaluate the effects of imposing stacked and reciprocal tariffs in the 2018 US
automobile market. To do so, we use the model chosen by our model selection procedure—
Cournot quantity setting with economies of scale. To disentangle the effect of tariffs on
finished cars and car parts, we perform three counterfactuals. In the first counterfactual,
denoted C1, we impose a 25% tariff on all foreign-manufactured cars (including Mexico
and Canada) imported to the US. Second, in C2, we impose a 25% tariff on both foreign-
manufactured cars and foreign-manufactured car parts imported to US. Third, in C3, we
impose 25% tariffs on all foreign imports and 25% reciprocal tariffs on US manufactured
parts exported for foreign assembly. The chosen 25% tariff level is in line with previous
proposals by President Trump in 2018.18

18E.g., https://www.piie.com/blogs/trade-and-investment-policy-watch/2018/trumps-propose
d-auto-tariffs-would-throw-us-automakers.
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6.1 Implementation of Counterfactuals

Under the Cournot model with economies of scale, the first order conditions in each market
are given by Equation (2), where ∆mt = ∆Ct takes the form specified in Equation (6) and
the implied costs cmt = cCt are obtained by taking the exponential of Equation (3). To
simulate counterfactual outcomes, we hold the demand and marginal cost parameters and
estimated cost shock ωCt fixed at their estimated levels. Across the counterfactuals, we
need to turn on and off specific tariffs depending on the country of assembly of the car
model and the sourcing of model’s parts. To simplify the exposition, we define an indicator
variable for foreign assembly of model j, ϕj .

To perform C1, we need to modify the first order conditions to account for a 25% tariff
on foreign assembled cars. Tariffs apply to the port cost, essentially an unobserved wholesale
price between manufacturer and dealer. Since port costs are unobserved, we must model
how they are set. We consider two approaches: (i) modeling the port price as a fraction λ

of the observed retail price pjt which the firm internalizes when making profit maximizing
choices, or (ii) modeling the port cost as a fraction ν of the implied marginal cost cmjt

which the firm takes as given with respect to its action. In the market for cars, Goldberg
(1995) and Goldberg and Verboven (2001) model unobserved wholesale prices by adopting
the first approach. Meanwhile, Coşar et al. (2018) adopt the second approach.

To account for the tariff, we need to appropriately modify the first-order conditions for
foreign assembled car models. Following the first approach, we could impose the 25% tariff
as an (25 × λ)% ad-valorem tax levied on the producers of foreign assembled cars; in the
second approach, we could scale νcmjt by 25%. Notice, that for λ = ν(1+ϕj0.25ν)

−1, these
two approaches are equivalent and the modified first order conditions with tariffs become19

pjt = ∆mjt + (1 + ν0.25)ϕjcmjt(·). (7)

As our main specification for C1, we set λ = 0.8 (or equivalently ν = 1), which is broadly in
line with Goldberg (1995). As a robustness check we set λ = 0.58 (equivalent to ν = 0.68,
corresponding to the estimate from Coşar et al. (2018))—results are in Appendix D.3.

To perform C2 and C3, we need to further modify the first order conditions to account
for tariffs on car parts. To perform these counterfactuals, we maintain several assumptions.
First, we assume for both foreign and domestically assembled cars that car assembly is 29%
of marginal cost while parts represent the remaining 71% (Menk, Chen, and Cregger, 2012).
We also assume a fixed value for the pass-through of the tariff to price of parts, denoted
Λ for all cars. From the AALA data, we know for each model of car j the fraction of the

19Dividing both sides of Equation (7) by (1 + 0.25ϕjν) and plugging in ν = ϕ(1 − ϕj0.25ν)
−1 yields

(1− ϕjλ× 0.25)pjt = (1− ϕjλ× 0.25)∆mjt + cmjt(·) which can be interpreted as levying an ad valorem tax
on the firms.
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total value of parts that were produced outside the US, which we denote µj and the fraction
produced in the US, denoted (1 − µj). Thus, across both C2 and C3 we can augment the
first order conditions to account for parts tariffs by scaling the appropriate part of marginal
cost. Specifically, in C2, we add tariffs on the foreign parts used in US assembled vehicles
so that the the first order conditions for each product j become

pjt = ∆mjt +

(
1 + ν0.25

)ϕj
(
1 + µjΛ0.71 · 0.25

)(1−ϕj)

cmjt(·).

In C3, we now include reciprocal tariffs on US parts used in foreign production so that first
order conditions for each product j become

pjt = ∆mjt +

((
1 + ν0.25

)(
1 + (1− µj)Λ0.71 · 0.25

))ϕj
(
1 + µjΛ0.71 · 0.25

)(1−ϕj)

cmjt(·).

In our main specifications, we set Λ = 1, which is akin to assuming in-house production
of all parts. This is also in line with the finding in Ganapati and Hottman (2025) of near-
unit pass-through of tariffs within supplier relationships. In Appendix D.3, we consider
alternative values of Λ.

With each counterfactual’s modified first-order conditions, we solve for equilibrium
prices using the generalization of the Morrow and Skerlos (2011) procedure developed in
Duarte (2025). There is a caveat to our analysis. We model scale economies arising from
total production, so that changes in foreign sales in reaction to US tariffs could, in principle,
impact firms’ marginal costs and US market outcomes. However, we only model car sales in
the US market. Thus, we keep foreign sales constant in our counterfactuals, and recompute
global production figures based on changes in US sales predicted by our model.

Finally, we note that our counterfactual analysis extrapolates the estimated cost function
to production levels that differ substantially from the baseline, with decreases in import
volumes but also meaningful increases in domestic production for certain car models (with
the median model-level increase reaching 16.2% in C3). A natural concern is whether such
production increases are feasible while achieving the same returns to scale we estimate in-
sample. We maintain that this assumption is plausible given industry capacity constraints
in 2018. According to Federal Reserve data, capacity utilization in the US automotive sector
was approximately 75% in 2018.20 This means that virtually all domestic factories could
plausibly add production shifts to accommodate increased demand in the short term while
preserving similar cost structures.

20See https://fred.stlouisfed.org/series/CAPUTLG33611SQ.
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6.2 Counterfactual Results

The counterfactual analysis reveals substantial effects from stacked tariffs. Table 5 shows
average price increases of 9.05% across all models in C1. This average masks heterogeneity
by assembly location: foreign-assembled cars experience 24.21% price increases (a 25% tariff
increases the average port cost by 21.3% under our model, but leads to a 24.2% increase in
retail price), while the prices of US-assembled cars decrease by 0.85%.

Our finding of pass-through exceeding one for foreign-assembled vehicles is broadly con-
sistent with the empirical literature on the 2018 Trump administration tariffs. Amiti et al.
(2019), Fajgelbaum et al. (2020), and Cavallo et al. (2021) documented complete or near-
complete pass-through of tariffs to import prices across a wide range of products, with
tariff-inclusive prices rising roughly one-for-one with tariff rates. While our analysis fo-
cuses on a counterfactual scenario rather than realized tariffs, and the automobile industry
has specific characteristics that may generate different pass-through rates, our estimated
pass-through of 1.14 falls within the range documented in that literature.

However, our findings reveal important differences from predictions that would emerge
under standard assumptions in the industrial organization literature. As we show in Ap-
pendix D.3, a model assuming Bertrand pricing with constant marginal costs predicts that
foreign manufacturers would exhibit sub-unit pass-through, while domestic manufacturers
would increase prices in response to the tariff. In contrast, our preferred model of Cournot
competition with economies of scale generates the opposite pattern: slightly above-unit
pass-through for foreign firms and price decreases for domestic producers.21 These differ-
ences have substantial welfare implications.22

The price reduction by domestic manufacturers in our model reflects strategic substi-
tutability between foreign and domestic producers under Cournot competition with economies
of scale. As tariffs raise foreign car prices, domestic firms gain market share and benefit from
lower marginal costs due to increased production volumes. This strategic substitutability
is reinforced by the quantity-setting nature of Cournot competition, where firms respond
to competitors’ higher costs by expanding output rather than by raising prices. Our find-
ing echoes results in Berry et al. (1999), who documented that European car prices fell
in response to voluntary export restraints on Japanese vehicles, even under their assump-
tion of Bertrand competition with constant costs. The Cournot assumption combined with
economies of scale further amplifies this strategic substitutability, leading domestic firms to

21The fact that different models of supply imply different pass-through rates suggests that, when variation
in tariffs or tax rates is available in the data, pass-through may be used to distinguish models of supply.
This is an old idea in IO (e.g., Sumner, 1981); Dearing et al. (2024) show that instrument-based methods,
such as the ones we use, essentially generalize this intuition and make it more broadly applicable.

22We find that the Bertrand-constant cost model understates the total welfare loss by over $6 billion in
our most comprehensive tariff scenario.
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reduce prices as they capture market share from constrained foreign competitors.

Table 5: Counterfactual Results – Prices

Fraction US % Change Prices

# Models Assembly Parts C1 C2 C3

All 314 0.35 0.23 +9.05 +12.96 +14.56

(0.79) (0.86) (0.99)

US 111 1.00 0.50 −0.85 +6.52 +6.39

(0.41) (0.1) (0.1)
Non-US 203 0.00 0.09 +24.21 +22.83 +27.07

(2.52) (2.11) (2.51)

The table reports the sales-weighted average of the percentage change in prices corresponding to tariff
counterfactuals C1-C3.

Table 5 also shows the effect of stacked and reciprocal tariffs on car prices in the US
market. When tariffs are also levied on car parts, the marginal cost of assembling cars
in the US increases. For cars assembled in the US, stacking tariffs on parts causes prices
to rise on average by 6.52%, as opposed to falling by 0.85%. As this increase generates
some substitution back to foreign firms, their overall price change under stacked tariffs is
slightly lower (22.83% vs 24.21%), due to economies of scale and strategic substitutability
via Cournot competition. Finally, comparing C2 and C3 shows the limited effect that
reciprocal tariffs on car parts have on car prices to US consumers. Overall, the response of
foreign manufacturers is to increase prices by an additional 4.24 percentage points, enabling
US assembled cars to lower prices by a modest 0.13 percentage points. Accounting for all
three types of tariffs, the average price of cars is increased by 14.56% in the US market.

Levying stacked and reciprocal tariffs on cars and car parts has differential effects on
profits across firms, depending on their choices of assembly locations and parts sourcing, as
we show in Table 6. When the tariffs are levied only on imported cars (C1) large importers
like VW see disproportionate losses, while firms with mostly domestic production (e.g.,
Tesla and Honda) see large gains. The Big 3 automakers (GM, Ford, Fiat Chrysler), with
intermediate levels of US production, see their profits almost unaffected. Stacking tariffs
on parts imported to the US (C2) changes the relative effect on profits across firms. Now,
relative to C1, losses accrue for firms with large US assembly and low US parts, including
GM, Ford, and Tesla. While reciprocal tariffs on US parts (C3) have a limited impact for
most manufacturers compared to C2, Fiat Chrysler – a firm with disproportionate foreign
assembly and US parts – sees its losses double. In Appendix D.2, we further explore changes
in profits on a model-specific basis, investigating whether manufacturers have incentive to
discontinue certain car models.
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Table 6: Counterfactual Results – Profits

Fraction US % Change Variable Profits

# Models Assembly Parts C1 C2 C3

All 314 0.35 0.23 −3.68 −10.88 −11.43

(0.77) (0.41) (0.54)

GM 42 0.76 0.41 −0.97 −13.66 −14.61

(1.16) (1.00) (1.43)

Toyota 39 0.58 0.44 −10.66 −11.72 −13.58

(0.37) (1.15) (1.36)

Ford 26 0.74 0.47 −0.90 −6.31 −6.43

(2.45) (0.49) (0.56)

Fiat-Chrysler 27 0.65 0.57 −2.64 −0.79 −4.01

(1.73) (0.69) (0.70)

Honda 17 0.91 0.49 +31.14 +19.05 +21.64

(1.70) (4.72) (4.55)

Volkswagen 29 0.16 0.11 −51.05 −50.91 −52.13

(2.10) (2.96) (2.98)

Tesla 3 1.00 0.51 +11.04 −3.11 −2.60

(0.32) (0.39) (0.43)

The table reports, for a subset of manufacturers, the percent change in total variable profits corresponding
to tariff counterfactuals C1-C3.

Tariffs on cars and car parts have sizable effects on consumer welfare. In Table 7, we
explore changes in household-level welfare, measured in US dollars, both by demographic
types and by the purchase decision made by the household. In C1, we see that tariffs on
imported cars (C1) hurt consumers overall. However, the welfare losses are larger for high-
income consumers (as they are more likely to stay in the market when prices increase) and
buyers of foreign cars. In fact, there are small welfare gains for buyers of US cars, as these
cars are sold at lower prices when the prices of foreign cars increase due to economies of
scale and Cournot strategic substitution.

Comparing C1 to C2 shows the important effect that stacked tariffs have in this market.
The additional losses to households are large – overall, the welfare loss nearly doubles. Now,
since the cost and prices of US assembled cars increase, the losses compared to C1 dispro-
portionally fall on purchasers of American cars. Finally, as the price effects of reciprocal
tariffs are minimal, these responses by foreign governments in C3 have limited effects on
US consumers of cars.
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Table 7: Counterfactual Results – Household-Level Consumer Surplus

Change in $ Change in $

C1 C2 C3 C1 C2 C3

All −508 −1, 115 −1, 161 Purchase Type

(68.4) (9.9) (11.2) Buy any car −1422 −2604 −2694

Demog. Type (95.7) (13.5) (18.1)

Income

1st Q −112 −198 −204 Low income −113 −199 −204

(9.5) (1.4) (2.2) (10.0) (1.6) (2.6)

2nd Q −210 −527 −543 Buy American 309 −1, 633 −1, 598

(46.7) (12.7) (17.0) (216.2) (96.8) (107.7)

3rd Q −568 −1, 225 −1, 276 Buy Import −3, 514 −3, 880 −4, 146

(86.9) (12.0) (15.5) (54.8) (121.7) (91.4)

4th Q −1, 179 −2, 593 −2, 712 Inside Option −1, 422 −2, 604 −2, 694

(134.8) (30.3) (22.7) (95.7) (13.5) (18.1)

HH Size

1 −250 −599 −615 Buy Amer. Low Inc. 248 −1, 365 −1, 338

(48.2) (8.5) (12.0) (182.2) (87.3) (97.1)

3-4 −684 −1, 373 −1, 445 Buy Amer. Low Inc. x Rural 256 −1, 120 −1, 101

(74.8) (11.3) (13.8) (175.9) (75.0) (84.0)

Rural −436 −995 −1, 030

(78.1) (13.6) (17.7)

Urban −518 −1, 132 −1, 181

(66.9) (10.3) (10.6)

The table reports the average compensating variation across households within a group for counterfactuals
C1-C3. The last three columns report changes based on pre-tariff purchase decisions.

In Table 8, we measure total welfare changes (in billions $) from the three counterfactu-
als. In each scenario, the welfare losses to consumers and firms easily outweigh government
revenues. Levying taxes only on imported cars in C1 results in a total welfare loss to con-
sumers and firms of $31.42 billion, of which only $13.47 billion is offset by tax revenue.
Comparing C2 to C1, stacked tariffs magnify the welfare losses. The losses to consumers
and firms more than double, while the total net surplus lost in the US market for cars
increases to more than $31 billion. Interestingly, the revenue from tariffs on parts exceeds
the revenue on car imports themselves. Finally, comparing C2 to C3, we find additional
losses from reciprocal tariffs of $3.57 billion.
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Table 8: Counterfactual Results – Total Surplus

Change in Billions $

C1 C2 C3

Consumer Surplus -25.91 -56.89 -59.27

(3.49) (0.51) (0.57)

Profit -5.51 -16.31 -17.13

(1.15) (0.62) (0.80)

Tax Revenue:

Car imports 13.47 17.93 15.57

(1.63) (1.48) (1.39)

Parts imports 23.65 25.64

(0.09) (0.18)

Total Net Surplus -17.95 -31.62 -35.19

(3.12) (1.26) (1.10)

The table reports overall welfare changes and tax revenue corresponding to tariff counterfactuals C1-C3.

6.3 Beyond Welfare: Effects on Employment

While our counterfactual analysis reveals substantial welfare losses from tariffs, these poli-
cies may be motivated by objectives beyond consumer welfare—particularly employment
creation in domestic manufacturing and the reshoring of production. Our model does not
directly capture non- price and quantity decisions of auto manufacturers. However, we can
use our counterfactual predictions to perform a back-of-the-envelope quantification of the
employment effects of each tariff scenario to provide a more comprehensive assessment of
trade-offs. We develop this analysis in this subsection, and provide in Appendix D.2 some
results on how tariffs provide incentives for the reshoring of parts production.

To estimate employment effects in both vehicle assembly and parts manufacturing for the
US in 2018, we assume that the annual ratio of labor expenditure to total revenue remains
constant after tariff imposition.23 For each of the two manufacturing sectors, indexed by k,
this ratio is defined as:

κk =
w̄kLk

Rk
,

23This assumption is in line with the Cobb-Douglas production function that underlies our cost function
specification.
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where Lk represents total US employment in sector k, w̄k indicates the sector’s average
wage, and Rk denotes total sector revenue. Further assuming that wages are unaffected in
the medium-run, employment in counterfactuals C1-C3 (L′

k) can then be computed from
counterfactual revenue R′

k as:
L′
k =

κk
w̄k
R′

k.

To implement this approach, we calculate κk for both assembly and parts sectors using
data from the Bureau of Labor Statistics’ Current Employment Statistics (for employment
and wages) and the Census Bureau’s Annual Survey of Manufactures (for total revenue).24

In 2018, κk is 0.042 for assembly, and 0.096 for parts.25

In each counterfactual C1-C3, our model predicts counterfactual revenues for cars assem-
bled in the US as R′

assembly =
∑

j assembled in US q
′
jp

′
j , where q′j is the counterfactual quantity

of model j in 2018 and p′j is the counterfactual price. To compute counterfactual revenues
in parts manufacturing, we scale the appropriate fraction of the counterfactual marginal
cost (c′j) corresponding to US produced parts by the counterfactual quantity. R′

parts sums
this model-level revenue over all models sold in the US, regardless of country of assembly.
We calculate it as R′

parts =
∑

j q
′
j × c′j × 0.71× (1− µj).

Table 9 presents our employment impact estimates across the three tariff scenarios. The
results reveal that tariffs would indeed create domestic jobs in both assembly and parts
manufacturing, though with varying effectiveness across scenarios.

Table 9: Employment Effects by Tariff Scenario

C1 C2 C3

Assembly Employment:
Added jobs (thousands) 68.7 32.65 40.28

(10.32) (4.21) (3.93)
Percentage change (%) 29.41 13.98 17.25

(4.42) (1.80) (1.68)

Parts Employment:
Added jobs (thousands) 38.31 3.44 3.33

(11.02) (4.98) (5.26)
Percentage change (%) 6.39 0.57 0.56

(1.84) (0.83) (0.88)

Total Jobs Created (thousands) 107.01 36.09 43.61
Annual Welfare Loss per Job (thousands $) 167.7 875.9 807.1

The table reports estimated employment changes in the US automotive assembly and parts manufacturing
sectors under tariff scenarios C1-C3. The annual welfare loss per job is calculated by dividing the total
welfare loss from Table 8 by the total number of jobs created.

24The vehicle assembly industry corresponds to NAICS 3361, while parts manufacturing is represented
by NAICS 3363.

25Both κk have remained stable over time in the data.

31



Under the car-only tariff scenario (C1), employment increases significantly in both sec-
tors, with approximately 68,700 new assembly jobs (a 29.4% increase) and 38,300 new parts
manufacturing jobs (a 6.4% increase). When tariffs are extended to imported parts (C2),
the employment gains in assembly and parts are substantially reduced to 32,700 jobs (14%
increase) and 3,400 jobs (0.6%), respectively. This stark reduction demonstrates how tariffs
on intermediate inputs can undermine the employment benefits of final goods protection.
The reciprocal tariff scenario (C3) shows slight changes to the employment effects: 40,300
new jobs (17.3% increase) are created in assembly while 3,300 jobs (0.6%) are created in
parts manufacturing.

To assess the efficiency of tariffs as an employment creation tool, we calculate the welfare
cost per job created, shown in the bottom row of Table 9. Each job created under the car-
only tariff scenario (C1) costs $167,700 in lost welfare per year. When tariffs extend to
parts (C2), this cost rises to $875,900 per job. Under the reciprocal tariff scenario (C3),
the cost remains high at $807,100 per job.

These figures significantly exceed the average annual compensation in the automotive
sector (approximately $75,000 in 2018), suggesting that tariffs represent a highly ineffi-
cient mechanism for job creation. The costs are particularly high under the stacked tariffs
scenarios, where increased input costs severely undermine the employment benefits while
magnifying welfare losses.

7 Conclusion

This paper makes two key contributions. First, we develop a new method for testing firm
conduct under economies of scale, revealing that Cournot competition with substantial scale
effects best characterizes the US automobile market. Our approach provides a framework
applicable to other manufacturing sectors where economies of scale matter, and distin-
guishing the correct model of supply (conduct and cost) from data may help shape credible
policy analysis. Second, we demonstrate how stacked tariffs propagate through global value
chains, producing effects that would be hard to predict without a granular evaluation of the
foreign parts content of domestic vehicles. Our counterfactual analysis shows how tariffs on
imported vehicles alone induce price decreases for domestic cars and welfare gains for their
buyers, while additional tariffs on parts reverse these effects, causing domestic prices to rise
by 6.5% and nearly doubling total welfare losses to $31 billion. The employment gains from
such policies come at a substantial welfare cost-rising from $107,000 per job under car-only
tariffs to $875,900 per job when parts tariffs are included. These findings highlight the
importance of accounting for both conduct and global value chains when evaluating trade
policy, especially in industries with complex international production networks.
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Our analysis is subject to several important caveats that echo concerns raised in Berry
et al. (1999). First, we employ a static model on both demand and supply, abstracting
from potentially important dynamic considerations. On the demand side, consumers may
anticipate or delay purchases in anticipation of future price changes. On the supply side,
important dynamic aspects of manufacturers’ decision-making include capacity adjustments
and product development. Second, we do not model the used car market, which may serve
as an important substitute for new vehicles. For both limitations, our focus on medium-
run effects provides some justification: production relocation and product development face
substantial frictions in this time frame, while the used vehicle stock remains relatively fixed.
Third, our counterfactuals involve substantial price changes, requiring extrapolation beyond
observed variation. While such extrapolation always requires caution, we take some comfort
in the fact that the demand system from Grieco et al. (2024) was estimated using long panel
variation capturing substantial price movements, and our assumption of stable preferences
is standard. These limitations suggest our results should be interpreted as informative but
incomplete estimates of automotive trade policy effects.
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Online Appendix

Appendix A The General Falsification Problem: Non-constant
Marginal Cost with Differentiated Products

In Section 4.2 of the paper, we focus on the problem of instrument relevance for testing
models of conduct in the context of our application – distinguishing between particular
conduct models (Bertrand, Cournot, or a hybrid) under a functional form assumption for
marginal costs (linearity in quantity produced).

In this appendix, we develop a more formal and general analysis of what instruments are
needed to distinguish models of conduct under scale economies. We adopt here a falsification
lens: this is useful because Duarte et al. (2024) establishes that instruments are irrelevant for
testing a pair of models with the RV test when neither model is falsified by the instruments,
so that E[ωmjt | wjt, zjt] = 0 for m = 1, 2. Thus, to shed light on instrument relevance for
a broader range of models under general economies of scale, we develop the condition for
falsification of a conduct model, and the economic intuition surrounding it.

A.1 Preliminaries

As in the text, we assume data in each market are generated by equilibrium play in a true
model of firm behavior pt = ∆0t + c0t. We normalize market size to 1, so that we may use
sjt and qjt interchangeably. Each candidate model m yields its own set of implied markups
∆mt as a function of observables and demand primitives; the marginal costs implied by that
model, cmt, are then calculated as pt −∆mt. We require the following for any model m to
have well-defined first-order conditions:

Assumption 1. (Equilibrium Uniqueness) For any model m, including the true model,
either: (i) A unique equilibrium exists, or (ii) The equilibrium selection rule consistently
yields the same pt for any given (cmt, xt, ξt).

This assumption is analogous to Assumption 13 in Berry and Haile (2014).
Demand and cost may include random shocks, varying across markets, that are unob-

served by the researcher. We now assume that marginal costs follow a general functional
form separable in the unobserved shock and a function of the observable cost shifters wjt

and own quantities, or c0jt = c̄0j(qjt,wjt) + ω0jt.
26 While this cost function departs from

the functional form used in the body of the paper, which was chosen for its applicability
26In principle, the function c̄0j can depend on the full vector qt, or lags. Restricting c̄0j to depend on

own quantity simplifies the exposition, and is in line with our application. Extensions, including economies
of scope, are straightforward, and generate no further qualitative insight.
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to the car market, it allows us to maintain the falsifiable restriction in Berry and Haile
(2014) which assumes that marginal cost is additively separable in ω0jt. The researcher can
observe wjt, but does not know the function c̄0j or observe ω0jt. To falsify incorrect models,
instruments zjt are constructed, which are assumed to be mean independent of unobserved
cost shocks under the true model:

Assumption 2. (Instrument Exogeneity) For each j, c0jt = c̄0j(qjt,wjt) + ω0jt, and zjt is
a vector of dz excluded instruments such that E[ω0jt | wjt, zjt] = 0.

For the true model, E[ω0jt | wjt, zjt] = 0 by Assumption 2, or equivalently, E[pjt−∆0jt−
c̄0j(qjt,wjt) | wjt, zjt] = 0 for the true cost function c̄0(·, ·). For a candidate model m and
candidate cost function c̄m, then, defining ωmjt = pjt −∆mjt − c̄mj(qjt,wjt), the condition
E[ωmjt | wjt, zjt] = 027 serves as a falsifiable restriction. If any cost function c̄mj(·, ·) allows
this restriction to be satisfied, we say that model m is not falsified by the instruments zjt.
If no cost functions {c̄mj(qjt,wjt)}

J
j=1 satisfy this restriction almost surely over wjt and zjt,

then model m is falsified.
Since prices in the data are generated by the true model, we can rewrite the implied

cost shock as ωmjt = ∆0jt −∆mjt + c̄0j(qjt,wjt)− c̄mj(qjt,wjt) + ω0jt. Thus, the condition
for falsificaiton is as follows:28

Lemma 1. Under Assumptions 1 and 2, model m is falsified by instruments zjt if and only
if for some j there exists no function c̄mj such that

E[∆0jt −∆mjt | wjt, zjt] = E[c̄mj(qjt,wjt)− c̄0j(qjt,wjt) | wjt, zjt] a.s. (8)

Here, as in the rest of the section, the expectation is over unobservables, and a.s. (almost
surely) is over realizations of the observables (wjt, zjt).

A.2 Intuition: Constant vs Non-Constant Marginal Costs

The expectations in Equation (8) are taken conditional on the realization of wjt, so a prod-
uct’s own cost shifters cannot offer any additional variation with which to form instruments.
Since c̄mj and c̄0j are functions only of wjt and qjt, any instrument can only move c̄mj and
c̄0j through its effect on own quantity qjt.

To build intuition, we will first consider the case, explored in Dearing et al. (2024),
where marginal costs do not depend on quantity produced. In that case, c̄mj and c̄0j can’t
depend on the instruments at all, so the right-hand side of Equation (8) is constant in zjt;

27This condition is analogous to the one in Theorem 9 in Berry and Haile (2014).
28Proofs of all lemmas, propositions, and corollaries are in Appendix A.6.
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falsification therefore depends on whether an instrument moves ∆0jt and ∆mjt differentially.
The following example illustrates how this would work.

Example 1: In this and the subsequent examples, we consider a simple environment with
two single-product firms and logit demand, so that market shares j ∈ {1, 2} are given by

sjt =
exp(xjtβ − αpjt)

1 + exp(x1tβ − αp1t) + exp(x2tβ − αp2t)
,

where xjt are characteristics of product j in market t and α and β are coefficients. We sup-
pose that the true conduct model is Cournot, and we wish to falsify Bertrand competition.

For this example, consider the case where true marginal cost is constant in quantity and
linear in a scalar wjt, or c̄0j = wjtτ , and hold unobservables fixed for ease of exposition.
The researcher forms an instrument using variation in the cost shifter of firm 2, z1t = w2t.
Because cost shifters do not enter in the markup function of either model, zjt effects ∆0jt

and ∆mjt only through its effect on observed prices pt.
Under the true (Cournot) model, the cost passthrough matrix can be calculated to be

PCt =

 s0t
1−s2t

0

0 s0t
1−s1t


and therefore a change in z1t = w2t only changes p2t, not p1t. Firm 1’s markup under
the two models can be calculated to be ∆01t = ∆C1t =

1
α

(
1 + s1t

s0t

)
and ∆m1t = ∆B1t =

1
α

(
1 + s1t

1−s1t

)
, where s0t = 1− s1t − s2t. It’s useful to rewrite these as

∆01t =
1

α
(1 + exp(x1tβ − αp1t)) and ∆m1t =

1

α

(
1 +

exp(x1tβ − αp1t)

1 + exp(x2tβ − αp2t)

)
which makes it clear that an increase in p2t (following an increase in c2t) will increase ∆m1t

but not ∆01t. Thus, the left-hand side of Equation (8) changes with z1t while the right-
hand side does not, so equality cannot be maintained for different values of z1t, falsifying
the wrong model. •

Falsification becomes more difficult when c̄0j and c̄mj are allowed to depend on the
quantity produced: since q1t changes in response to a change in the instrument, the change
in the left-hand side of Equation (8) can potentially be matched by a change in the right-
hand side due to the differential dependence of c̄mj and c̄0j on qjt. In fact, with a single
instrument, falsification will typically be impossible, as a cost function c̄mj for a misspecified
model ∆m ̸= ∆0 can typically be constructed to satisfy Equation (9), as stated in Remark
5 for the log marginal cost case. This is further illustrated in the next example:
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Example 2 : Suppose that true marginal cost depends linearly on the quantity produced,
c̄0j = wjtτ + qjtγ,

29 and consider again using a scalar rival cost shifter instrument z1t = w2t

to falsify Bertrand competition when the true model is Cournot. The lack of falsification is
easiest to see in the case where w2t is the only variation across markets, i.e., unobservables
and w1t are held fixed. With only w2t varying, there is a one-to-one mapping from the
realization of w2t to the realizations of both prices pt and market shares qt,

30 so whatever
variation in c1t is needed to rationalize the incorrect model m can be attributed to the
dependence of c̄m1 on q1t; letting w2(s) denote the value of w2t which would lead to market
share q1t = s, and suppressing the dependence on w1t since it is fixed, the cost function

c̄m1(q1t) = c̄01(q1t) + E(∆01t −∆m1t|w2t = w2(q1t))

along with
c̄m2(w2t, q2t) = c̄02(w2t, q2t) + E(∆02t −∆m2t|w2t)

mechanically satisfies Equation (8), and therefore falsification fails (Lemma 1). (In the
absence of variation in unobservables or w1t, the difference in markups ∆0jt − ∆mjt is a
deterministic function of w2t, and the expectations on the right-hand side are degenerate,
but are written this way for consistency.)

With variation in both firms’ cost shifters and unobservables, things get a little less
transparent, as c̄mj can only depend on wjt and qjt, and must match its “target” in expec-
tation over everything else. However, the cost functions

c̄mj(wjt, qjt) = c̄0j(wjt, qjt) + E(∆0jt −∆mjt|wjt, qjt)

where the expectation on the right is now being taken over the distribution (conditional on
the value of wjt) of combinations of w−jt and unobservables which would lead to the observed
market share qjt, will again satisfy the condition in Lemma 1 for falsification to fail. •

Now, the cost function c̄mj that rationalizes the incorrect model might be ruled out
in some other way: for example, it might exhibit diseconomies of scale, when economies
of scale were expected. So falsification with a single instrument may still be possible in
some instances; but it would be falsification of the combination of a conduct model and an
additional assumption (beyond Assumption 2) about cost structure, not just the conduct
model.

29While marginal cost is linear in own quantity, the researcher does not know this ex ante, and failure of
linearity of a candidate cost function c̄mj would not falsify the corresponding model m.

30This is particularly straightforward since passthrough under the true model (Cournot) is diagonal, and
we can calculate dpt

dz1t
=

[
0

τ
s0t

1−s1t

]
, and dqt

dz1t
= τ

s0t
1−s1t

[ αs1ts2t
−αs2t(1−s2t)

]
since ∂c̄2t

∂w2t
= τ .
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A.3 Recasting in terms of Marginal Effects

As in Dearing et al. (2024), to better understand the economic content of the falsifiable
restriction and the determinants of falsification, it’s useful to restate Lemma 1 in terms of
the marginal impacts of the instruments on markups. This depends on an assumption that
markups vary continuously in the instruments:31

Assumption 3. (Continuous Markups) For any model m under consideration, including
the true one m = 0, E[∆mjt | wjt, zjt] is absolutely continuous in zjt for every j.

For Equation (8) to hold at different values of zjt, a change in zjt must have the same
marginal impact on the two sides of the equation, leading to the following:

Proposition 1. Suppose that Assumptions 1, 2, and 3 hold. Then, model m is falsified by
the instruments zjt if and only if for some j there exists no function c̄mj such that for all k

E

[
d∆0jt

dz(k)jt

−
d∆mjt

dz(k)jt

| wjt, zjt

]
= E

[(
∂c̄mj(qjt,wjt)

∂qjt
−
∂c̄0j(qjt,wjt)

∂qjt

)
dqjt
dz(k)jt

| wjt, zjt

]
a.s.

(9)

As noted above, since the expectations in Equation (8) are conditional on a realization
of wjt, the instruments can only change the right-hand side through qjt, hence the right-
hand side of Equation (9). In the case of constant marginal costs, the right-hand side
of Equation (9) is zero, and falsification depends on whether the left hand side is zero.
As for the left-hand side, instruments can affect ∆0jt and ∆mjt in two ways. Markups are
typically expressed as functions of prices, market shares, and price elasticities; depending on
the instrument, it may have a direct effect on markups (a product characteristic affecting
market share even at fixed prices), and an additional effect through its effect on prices.
Defining P0t and Pmt as the cost pass-through matrices of the two models, we can explicitly
decompose the left-hand side of Equation (9) into these two effects, as

E

[
∂∆0jt

∂z
(k)
jt

−
∂∆mjt

∂z
(k)
jt

| wjt, zjt

]
+ E

[(
P−1
mt − P−1

0t

)
j

dp0
dz(k)jt

| wjt, zjt

]
,

where the first term denotes the difference in the direct effects of instruments on markups,
while the second denotes the difference in indirect effects through prices, which depends on
the inverse pass-through matrices of the two models. Except in knife-edge cases where the
two effects cancel out, then, falsification with constant marginal costs can be achieved if
either the indirect or direct effect is non-zero. (In Example 1 above, there was no direct

31Assumption 3 holds for all models in our examples and application.
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effect since costs do not enter directly into markups, but the indirect effect was nonzero,
allowing falsification.) On the other hand, falsification with non-constant marginal costs
will typically fail with one instrument, as in Example 2 above, since ∂cmj

∂qjt
can be chosen

judiciously to satisfy Equation (9).

A.4 Non-Constant Costs and Multiple Instruments

A possible solution when marginal costs depend on quantity is to use additional instruments.
The next example shows why this can work:

Example 3 : Suppose again that demand is logit, c̄0j = wjtτ+qjtγ, and the researcher wants
to falsify the Bertrand model when the truth is Cournot. This time, the researcher chooses
two instruments: a rival cost shifter, z(1)1t = w(1)

2t , and an own product characteristic which
is excluded from cost, z(2)1t = x

(1)
1t . Let τ (1) be the coefficient with which w(1)

2t enters c̄02,
and β(1) the coefficient with which x(1)1t enters into logit demand, and assume for exposition
that τ (1), β(1) > 0. From Proposition 1, we can falsify model m unless a cost function c̄m1

exists satisfying

E

[
d∆01t

dz(k)1t

− d∆m1t

dz(k)1t

| w1t, z1t

]
= E

[(
∂c̄m1

∂q1t
− ∂c̄01
∂q1t

)
dq1t
dz(k)1t

| w1t, z1t

]
(10)

almost surely for both instruments. We’ll show why no such cost function can exist, and
therefore why the model is falsified.

First, note that dq1t/dz
(k)
1t > 0 for both instruments – under the true model (Cournot),

an increase in a rival’s cost, and an increase in one’s own product quality, both result
in a higher own market share in equilibrium. The first occurs because, under Cournot,
passthrough is diagonal, so an increase in w(1)

2t results in an increase in p2t and no change in
p1t, increasing q1t. The latter is more subtle, because an increase in own quality results in an
increase in own price; but the equilibrium price adjustment is small enough that x1tβ−αp1t
increases with an increase in x

(1)
1t . With no change in p2t, this then leads to an increase in

q1t as well.32

Again rewriting firm 1’s markup under the two models as

∆01t =
1

α
(1 + exp(x1tβ − αp1t)) and ∆m1t =

1

α

(
1 +

exp(x1tβ − αp1t)

1 + exp(x2tβ − αp2t)

)
allows us to see the effect of each instrument on ∆01t −∆m1t:

32To be more thorough, under Cournot, dpt/dw(1)
2t = τ

(1) [ 0
s0t/(1−s1t)

]
and dpt/dx(1)

1t = β
(1)

α

[
s1t/(1−s2t)

0

]
.

From the latter, d(x1tβ − αp1t)/dx
(1)
1t = β

(1) − αβ
(1)

α
s1t/(s0t + s1t) > 0.
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• An increase in w(1)
2t , by increasing p2t without changing p1t, does not change ∆01t, but

increases ∆m1t. Thus, for the first instrument, the left-hand side of Equation (10) is
negative.

• An increase in x(1)1t , by increasing x1tβ−αp1t without changing x2tβ−αp2t, increases
both ∆01t and ∆m1t, but it increases ∆01t by more; so for the second instrument, the
left-hand side of equation (10) is positive.

This makes it clear why the two instruments together suffice to falsify the wrong model: since
dq1t
dz(k)1t

is positive for both instruments and (by assumption) ∂c̄01
∂q1t

= γ, for each realization of

observables, the expected value of ∂c̄m1
∂q1t

would need to be less than γ to satisfy the exclusion
restriction for the first instrument, but more than γ to satisfy the exclusion restriction for
the second instrument.

It’s useful to return to the economics of the situation for further intuition. An increase
in firm 2’s cost under the true model leads to an increase in p2t but no change in p1t;
because rival’s cost passthrough is positive under Bertrand, however, the Bertrand model
“sees” the lack of a change in p1t as evidence of a partly offsetting decrease in c1t, expressed
as an increase in firm 1’s markup. Since firm 1’s cost shifter did not change, this decrease
in marginal costs must be attributed to the increased level of output, requiring ∂c̄m1

∂q1t
to be

smaller than its true value. On the other hand, when firm 1’s quality increases and price
adjusts, this leads to a smaller change in the measured markup under Bertrand than under
Cournot, or an increase in imputed marginal cost under Bertrand relative to Cournot; since
(again) w1t did not change, this greater marginal cost increase must now be attributed to
the increase in output, requiring ∂c̄m1

∂q1t
to this time be larger than its true value. Since ∂c̄m1

∂q1t

can’t simultaneously be less than and greater than γ, the model is falsified. •

This example makes falsification particularly transparent, because the left-hand side of
Equation (10) is positive for one instrument and negative for the other, while dq1t

dz
(k)
1t

has the

same sign for both instruments. Things won’t always be this clean. Still, this illustrates the
more general point that when two instruments effect the environment through economically
distinct channels, there is no reason they should change the difference in measured markups
between two models identically; and if they don’t (relative to how they shift own market
share), then the requirements for a cost function to fit the observed changes will be different
for the two instruments, and no single cost function will be able to “satisfy” both, allowing
the model to be falsified.

A.5 Redundant vs “Economically Distinct” Instruments

A key to this working, however, is that the two chosen instruments have economically
distinct impacts on market outcomes. Multiple instruments won’t allow for falsification
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when they provide essentially the same information.
For example, suppose that wjt includes two separate cost shifters, so that c̄0jt =

w(1)
jt τ

(1) + w(2)
jt τ

(2) + qjtγ0. As before, the researcher wants to falsify the Bertrand model

when the truth is Cournot. The researcher constructs two instruments: z(1)1t = w(1)
2t and

z
(2)
1t = w(2)

2t . However, the two instruments affect ∆01t, ∆m1t, and q1t identically, just scaled
in proportion to the corresponding coefficients τ (1) and τ (2). This implies that the same
misspecified cost function c̄m1 that satisfies Equation (9) for z(1)jt , will also satisfy it for z(2)jt ,
making falsification impossible.33

We can formalize this insight somewhat by noting that in any setting where falsifi-
cation is impossible with a single instrument (the typical case with economoies of scale),
falsification remains impossible with K > 1 instruments if there exist a set of constants

{ζjk}k>1 such that dqjt
dz(k)jt

= ζjk
dqjt
dz(1)jt

and
(

d∆0jt

dz(k)jt

− d∆mjt

dz(k)jt

)
= ζjk

(
d∆0jt

dz(1)jt

− d∆mjt

dz(1)jt

)
for each

k > 1. That is, additional instruments bring no additional power to falsify a model if their
economic effects are simply rescalings of those of existing instruments. Notice that this is
analogous to the condition (5) in Remark 6 in the main body of the paper.

This may sound so obvious that it doesn’t bear discussion, but redundancy of instru-
ments in this way can occasionally crop up in unexpected places. In our well-trodden
example environment of simple logit demand, for example, instruments formed from a ri-
val’s cost shifter and a product characteristic of the same rival turn out to be redundant!
That is, when we allow for economies of scale, falsifying the Bertrand model when true firm
conduct is Cournot is impossible using the two instruments z(1)1t = w(1)

2t and z
(2)
2t = x

(1)
2t .

The failure of falsification, however, is due to a rather knife-edge fact about the particular
demand system. In simple logit, demand depends on product characteristics and prices
only through a single index δjt = xjtβ − αpjt + ξjt for each product. Given that fact,
for most standard conduct models, equilibrium markups depend on product characteristics
and marginal costs only through the terms

{
xjtβ − αcjt

}
j=1,...,J

.34 This means a change
in a product characteristic has the same equilibrium impacts on market shares and implied
markups as a change in its marginal cost, scaled by the appropriate coefficients. However,
without the single index restriction, this would not be the case; in a richer demand system
with random coefficients, for example, the effects of a product characteristic and a cost
shifter of the same product would not simply be rescalings of each other, and we would

33That is, since both instruments affect outcomes only through c2t, we will have d(∆01t−∆m1t)

dz(k)
1t

=

τ
(k) d(∆01t−∆m1t)

dc2t
and dq1t

dz(k)
1t

= τ
(k) dq1t

dc2t
for k = 1, 2, so if (9) holds for k = 1 it will hold for k = 2.

34Appendix C of Dearing et al. (2024) explores the set of conduct models where this occurs; in brief,
if each firm is maximizing profits under some assumption about how rivals will respond to their actions,
their problem is max

∑
j∈F (pjt − cjt)sjt(pt), we can think instead of the firms choosing markups to solve

max
∑

j∈F ∆jtsjt(δt), and write δjt = xjtβ−αpjt + ξjt instead as δjt =
(
xjtβ − αcjt + ξjt

)
−α∆jt, to make

clear that the ∆jt that form equilibrium can depend on xt and ct only through xtβ − αct + ξt.
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expect to be able to falsify the incorrect model of conduct.
This discussion is simply meant to highlight the fact that if multiple instruments are to

allow falsification in the presence of economies of scale, it’s essential that they be econom-
ically distinct, which we define informally as having equilibrium effects on market shares
and implied markups which do not both vary (across instruments) by the same scalar
multipliers. In particular, two economically distinct instruments either differentially move
quantities under the true model or differentially move the difference in markups. As stated
in Remark 7, it should be easy to select economically distinct instruments, meaning falsi-
fication under non-constant marginal costs is typically possible in a standard differentiated
product environment. Example 3 illustrated this, pairing a characteristic of one product
with a cost shifter of a rival product. We just noted that under certain demand systems
such as simple logit, it is not sufficient to pair a cost shifter and product characteristic of the
same rival product, but outside of the “single index” demand systems discussed above, we
would expect cost side instruments and demand side instruments to typically be econom-
ically distinct. In addition, with more than two firms, instruments that shift the marginal
costs of different rival products may in fact be economically distinct, particularly in demand
models sufficiently rich for some products to be “closer substitutes” than others.

A.6 Proofs

Proof of Lemma 1. As we note in the text, in our parametric framework, the falsifiable
restriction in Equation (28) of Berry and Haile (2014) is35

E[ωmjt | wjt, zjt] = E[pjt −∆mjt − c̄mj(wjt) | wjt, zjt] = 0 a.s.

Since observed prices are generated under the true model as

pjt = ∆0jt + c0jt = ∆0jt + c̄0j(wjt) + ω0jt

and E[ω0jt | wjt, zjt] = 0 under Assumption 2, the falsifiable restriction is equivalent to

E[∆0jt + c̄0j(wjt) + ω0jt −∆mjt − c̄mj(wjt) | wjt, zjt] = 0 a.s.

or equivalently

E[∆0jt −∆mjt | wjt, zjt] = c̄mj(wjt)− c̄0j(wjt) a.s.

giving the result.
35See Section 6, Case 2 in Berry and Haile (2014) for a discussion of their non-parametric environment.
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Proof of Proposition 1. In our parametric framework, the falsifiable restriction in Equation
(28) of Berry and Haile (2014) is that for all j there exists a cost function c̄mj such that:

E[pjt −∆mjt | wjt, zjt] = E[c̄mj(qjt,wjt) | wjt, zjt] a.s.

By plugging in for pt as in the proof of Lemma 1, a model m is not falsified if for all j there
exists a cost function c̄mj such that

E[∆0jt −∆mjt | wjt, zjt] = E[c̄mj(qjt,wjt)− c̄0j(qjt,wjt) | wjt, zjt] a.s.

The result thus follows by extending Lemma 2 in Dearing et al. (2024) to this restriction,
so that a model is falsified if for some j there exists no cost function c̄mj such that for all k

E

[
d∆0jt

dz(k)jt

−
d∆mjt

dz(k)jt

| wjt, zjt

]
= E

[
dc̄mj(qjt,wjt)

dz(k)jt

−
dc̄0j(qjt,wjt)

dz(k)jt

| wjt, zjt

]
a.s.

Appendix B Convergence of the Modified RV- and F -statistics

The derivations herein are not tied to the log-log specification of Equation (3) and apply for
arbitrary, known transformations of the model-implied costs and relevant level of quantities.
Hence, we adopt the notation cmjt = f(pjt −∆mjt) and qjt = g(qpjt) for known functions f
and g and extend the definitions of Section 4 from the log-transformed model considered
there to these arbitrary, known transforms.

Test statistics We first give explicit definitions of the test statistics TRV and F utilized
in the paper. With data on n observations, the in-sample analogue of our measure of lack-
of-fit is given as Q̂m = ĝ′mŴ ĝm where Ŵ = ( 1n

∑
j,t ẑ

e
jtẑ

e′
jt)

+, ĝm = 1
n

∑
j,t ẑ

e
jtω̂mjt, ẑ

e
jt is the

residual in a projection on ˆ̃q and w,

ẑejt = zjt − λ̂q ˆ̃q − Λ̂wwjt for

[
λ̂′q

Λ̂′
w

]
=

[(
ˆ̃q,w
)′ (

ˆ̃q,w
)]−1 (

ˆ̃q,w
)′
z.

the estimated cost error ω̂mjt is the residual in a sample 2SLS projection,

ω̂mjt = log
(
pjt −∆mjt

)
− γ̂m log(qpjt)− w′

jtτ̂m
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with (
γ̂m

τ̂m

)
=

[(
ˆ̃q,w
)′

(log(qp),w)

]−1 (
ˆ̃q,w
)′

log (p−∆m)) ,

where ˆ̃qjt is an in-sample prediction, ˆ̃qjt = z′jtζ̂z+w′
jtζ̂w, for (ζ̂ ′z, ζ̂

′
w)

′ =
[
(z,w)′(z,w)

]−1
(z,w)′q.

The standard error used in the RV test statistic is

σ̂2RV = 4
[
ĝ′1Ŵ

1/2V̂ RV
11 Ŵ 1/2ĝ1 + ĝ′2Ŵ

1/2V̂ RV
22 Ŵ 1/2ĝ2 − 2ĝ′1Ŵ

1/2V̂ RV
12 Ŵ 1/2ĝ2

]
where V̂ RV

ℓk is an estimator of the covariance between
√
nŴ 1/2ĝℓ and

√
nŴ 1/2ĝk. Our

proposed V̂ RV
ℓk is given by V̂ RV

ℓk = n−1∑
j,t ψ̂ℓjtψ̂

′
kjt where

ψ̂mjt = Ŵ 1/2(ẑejtω̂mjt − ĝm
)
− 1

2Ŵ
3/4
(
ẑejtẑ

e′
jt − Ŵ+

)
Ŵ 3/4ĝm

+ 1
2Ŵ

3/4
(
Ŵ+Ẑẑrjtq̂

e
jtλ̂

′
q + λ̂q z̃

′
jtq̂

e
jtẐŴ

+
)
Ŵ 3/4ĝm.

The second line in the definition of this influence function captures the added variability
from estimation of the best linear predictor q̃ and relies on the definitions q̂ejt = qjt − ˆ̃qjt,
ẑrjt = zjt−w

′
jt(w

′w)−1w′z, and Ẑ = ( 1n
∑

j,t ẑ
r
jtẑ

r′
jt)

−1. This variance estimator is transparent
and easy to implement. Adjustments to ψ̂mjt and/or V̂ RV

ℓk can also accommodate initial
demand estimation and clustering.

The F -statistic in the current context is a joint test statistic for the two hypotheses:
HAR

0m : πm = 0 in the equations ωmjt = ze′jtπm + emjt for m = 1, 2. Formulaically, it is

F =
(
1− ρ̂2

) n

2(dz − 1)

σ̂22 ĝ
′
1Ŵ ĝ1 + σ̂21 ĝ

′
2Ŵ ĝ2 − 2σ̂12ĝ

′
1Ŵ ĝ2

σ̂21σ̂
2
2 − σ̂212

,

where

ρ̂2 =

(
σ̂21 − σ̂22

)2(
σ̂21 + σ̂22

)2 − 4σ̂212
, σ̂2m =

trace
(
V̂ AR
mmŴ

+)
dz − 1

, σ̂12 =
trace

(
V̂ AR
12 Ŵ+)

dz − 1
,

V̂ AR
ℓk = n−1∑

j,t ϕ̂ℓjtϕ̂
′
kjt where ϕ̂mjt = Ŵ ẑejt

(
ω̂mjt − ẑe′jtπ̂m

)
, and π̂m = Ŵ ĝm is a (reduced

rank) OLS estimator of πm.

Assumptions The following assumptions list direct analogues of Assumptions 1–4 in
Duarte et al. (2024). The only key new requirement is in Assumption 5, part (ii), which
ensures that the instruments are strong for pinning down the economies of scale. We refer
to Duarte et al. (2024) for further discussion.

Assumption 4. zjt is a vector of dz excluded instruments, so that E[zjtω0jt] = 0.
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Assumption 5. (i) {pjt,∆0jt,∆1jt,∆2jt, zjt,wjt, q
p
jt, ω0jt}j,t are jointly iid with the observ-

ables being pjt,∆1jt,∆2jt, zjt,wjt, q
p
jt; (ii) E

[
(∆1jt−∆2jt)

2] is positive, E
[
(z′jt,w

′
jt)

′(z′jt,w
′
jt)
]

is positive definite, and E
[
(z′jt,w

′
jt)

′(qjt,w
′
jt)
]

has full rank; (iii) the entries of c1jt, c2jt, zjt,
wjt, qjt, ω1jt, and ω2jt have finite fourth moments.

Assumption 6. The error term in Equation (4), emjt, is homoskedastic, i.e., E[e2mjtz
e
jtz

e′
jt] =

σ2mE[zejtz
e′
jt] with σ2m > 0 for m ∈ {1, 2} and E[e1jte2jtz

e
jtz

e′
jt] = σ12E[zejtz

e′
jt] with σ212 < σ21σ

2
2.

Assumption 7. Define πm =Wgm. For both m = 1 and m = 2,

πm = qm/
√
n for some finite vector qm.

Establishing Remark 4 To establish the guidance provided in Remark 4, we prove the
following result, which is a direct analog of Proposition 4 in Duarte et al. (2024) with the
only difference being that dz − 1 replaces dz:

Proposition 2. Suppose Assumptions 4–7 hold. Then

(i)

(
|TRV|
F

)
d−→

|Ψ′
−Ψ+|/

(
∥Ψ−∥

2 + ∥Ψ+∥
2 + 2ρΨ′

−Ψ+

)1/2(
∥Ψ−∥

2 + ∥Ψ+∥
2 − 2ρΨ′

−Ψ+

)
/(2dz)


where ρ̂2 p−→ ρ2 and (

Ψ−

Ψ+

)
∼ N

((
µ−e1

µ+e1

)
,

[
1 ρ

ρ 1

]
⊗ Idz−1

)
,

(ii) HRV
0 holds if and only if µ− = 0,

(iii) HAR
0,1 and HAR

0,2 holds if and only if µ+ = 0,

(iv) 0 ≤ µ− ≤ µ+.

To establish Proposition 2, we establish the following lemma, which generalizes Lemma
A.1 in Duarte et al. (2024) to the setting of this paper. Given this lemma, Proposition 2
follows by the use of the same proof as for Proposition 4 in Duarte et al. (2024).

To state the following lemma and give a formulation of σ2RV, we introduce population
versions of ψ̂mjt and ϕ̂mjt along with notation for their variances. Let

ψmjt =W 1/2zejtωmjt − 1
2W

3/4zejtz
e′
jtW

3/4gm − 1
2W

1/2gm

+ 1
2W

3/4
(
W+Zzrjtq

e
jtλ

′
q + λqz

′
jtq

e
jtZW

+
)
W 3/4gm.

and ϕmjt =Wzejtemjt where qejt = qjt− q̃jt, z
r
jt = zjt−w

′
jtE[w′w]−1E[w′z], Z = E[zrjtz

r′
jt]

−1,
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and [
λ′q

Λ′
w

]
= E

[
(q̃,w)′ (q̃,w)

]−1
E
[
(q̃,w)′ z

]
.

Also, let V RV
ℓk = E[ψℓjtψ

′
kjt], V

AR
ℓk = E[ϕℓjtϕ

′
kjt], and V RV = E[(ψ′

1jt, ψ
′
2jt)

′(ψ′
1jt, ψ

′
2jt)],

which is a matrix with V RV
11 , V RV

12 , and V RV
22 as its entries. Finally,

σ2RV = 4
[
g′1W

1/2V RV
11 W 1/2g1 + g′2W

1/2V RV
22 W 1/2g2 − 2g′1W

1/2V RV
12 W 1/2g2

]
.

Lemma B.1. Suppose Assumptions 4 and 5 hold. For ℓ, k ∈ {1, 2}, we have

(i)
√
n

(
Ŵ 1/2ĝ1 −W 1/2g1

Ŵ 1/2ĝ2 −W 1/2g2

)
d−→ N

(
0, V RV), (ii) V̂ RV

ℓk
p−→ V RV

ℓk ,

(iii)
√
n (π̂m − πm)

d−→ N
(
0, V AR

m

)
, (iv) V̂ AR

m
p−→ V AR

m .

Remark 8. When the RV test is not degenerate, i.e., when σ2RV > 0, it follows from parts
(i), (ii), and a first order Taylor approximation that TRV d−→ N(0, 1) under HRV

0 so that
the RV test is asymptotically valid. Details of this step can be found in Rivers and Vuong
(2002); Hall and Pelletier (2011) and are omitted. When non-degeneracy fails to hold, a
first-order Taylor approximation does not capture the behavior of TRV.

Proof of Lemma B.1. To prove their analog of this lemma, Duarte et al. (2024) proceeds in
three steps to establish (i) and (ii) before commenting on the minor modifications in the
argument that establish (iii) and (iv). Here we comment on the modifications needed due to
the introduction of economies of scale. Step (1) shows that 1√

n

∑
j,t(ψ

′
1jt, ψ

′
2jt)

′ d−→ N(0, V RV)

and V̌ RV
ℓk := 1

n

∑
j,t ψℓjtψ

′
kjt

p−→ V RV
ℓk for ℓ, k ∈ {1, 2}, and this step require no new arguments.

Step (2) establishes that
√
n
(
Ŵ 1/2ĝm −W 1/2gm

)
− 1√

n

∑
j,t ψmjt = op(1) for m ∈ {1, 2},

and step (3) proofs that trace
(
(V̂ RV

ℓk − V̌ RV
ℓk )′(V̂ RV

ℓk − V̌ RV
ℓk )

)
= op(1) for ℓ, k ∈ {1, 2}. In the

approximations of the last two steps, the only new complication to handle is the estimation
of the best linear predictor q̃ and the economies of scale parameter γm.

As in Remark 2 of Duarte et al. (2024), we have that gm = n−1ẑe′ω̂m = n−1ze′ω̂m

leading to the approximation

n−1(ẑe′ω̂m − ze′ωm) = n−1ze′(ω̂m − ωm) = n−1ze′(q,w)︸ ︷︷ ︸
=Op(n

−1/2
)

(
γm − γ̂m

τm − τ̂m

)
︸ ︷︷ ︸
=Op(n

−1/2
)

= Op(n
−1).
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For n−1ẑe′ẑe, we instead have

n−1(ẑe′ẑe − ze′ze) = n−1ze′(ẑe − ze) + n−1(ẑe − ze)′ze + n−1(ẑe − ze)′(ẑe − ze).

Here we can write ẑe − ze as

ẑe − ze = (q̃,w)

(
λ′q

Λ′
w

)
− (ˆ̃q,w)

(
λ̂′q

Λ̂′
w

)
= (q̃,w)

(
λ′q − λ̂′q

Λ′
w − Λ̂′

w

)
−
(
(ˆ̃q − q̃)λ̂′q,0

)
where in turn ˆ̃q − q̃ = z(ζ̂z − ζz) + w(ζ̂w − ζw). Since n−1ze′(q̃, w) = Op(n

−1/2) and
n−1ze′z = W+ + Op(n

−1/2), standard arguments (among which a key one is ζ̂z − ζz =

n−1Zzr′qe +Op(n
−1)) imply that

n−1ẑe′ẑe = n−1ze′ze − n−1W+Zzr′qeλ′q − n−1λqq
e′zrZW+ +Op(n

−1).

Thus, it follows by the same steps as in the proof of the analog lemma in Duarte et al.
(2024), that

Ŵ 1/2ĝm−W 1/2gm = 1
n

∑
j,t
ψmjt+Op

(
n−1).

Tracing the proof in Duarte et al. (2024), the key step is to establish that n−1∑
j,t∥ψ̂mjt−

ψmjt∥
2 = op(1), which follows by arguments used in the first half of this proof.

Appendix C Monte Carlo Simulations

We now illustrate the performance of the procedure developed in Section 4 of the paper
through Monte Carlo simulations.

Setup: We simulate data for 100,000 markets using PyBLP (Conlon and Gortmaker, 2020).
In each market, two single-product firms compete. Consumer utility follows a logit speci-
fication with a price coefficient α and three product characteristics (including a constant),
with coefficients β = [1, 2, 1]. For each product-market pair, we draw two characteristics
independently from a uniform distribution U [0, 3].

On the supply side, marginal costs include two observed shifters (also drawn from U [0, 3])
and a constant, with coefficients τ = [3, 0.5, 1.5]. When present, economies of scale enter
through a parameter γ = −0.5 that multiplies quantity. The unobserved demand (ξjt) and
cost (ωjt) shocks follow a bivariate normal distribution with unit variances and correlation
0.9, which is the default in PyBLP. We select demand and cost parameters to generate
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reasonable elasticities and outside good shares. In all simulations, the true model is Bertrand
competition, while we attempt to falsify Cournot competition.

Results: Table 10 reports results from six simulation experiments that illustrate our the-
oretical findings on instrument relevance. For each experiment, we report both the RV test
statistic TRV and the F -statistic that diagnoses instrument strength, computed with the
package pyRVtest (Duarte et al., 2022).

Table 10: Illustrating Instrument Relevance

Experiments (1) (2) (3) (4) (5) (6)

DGP and Instruments
Econ. of Scale (γ) 0 -0.5 -0.5 -0.5 -0.5 -0.5
Instrument w(1)

−j w(1)
−j w(1)

−j ,w
(2)
−j w(1)

−j , x
(1)
j w(1)

−j , x
(1)
−j x

(1)
j , x

(1)
−j

Panel A: Bertrand vs. Cournot
T

RV −2.5 −0.0 −0.4 −3.2 −0.2 −5.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

F 2, 894.2 0.0 0.2 1, 443.6 0.0 4, 189.4

† † † ∧ ∧∧ † † † ∧ ∧∧ † † † ∧ ∧∧

Panel B: Model-implied Estimated Economies of Scale (γ̂B , γ̂C)

γ̂B – −0.6 −0.8 −0.5 −0.7 −0.5

– (0.46) (0.32) (0.02) (0.23) (0.02)
γ̂C – 2.3 2.3 −0.7 2.2 −0.7

– (0.49) (0.33) (0.02) (0.24) (0.02)

The table reports, for each experiment 1-6, the RV test statistics T
RV and effective F -statistic in

panel A, and estimated economies of scale parameters in panel B. For panel A, a negative RV test
statistic suggests a better fit of the true Bertrand model. The symbol ∗ ∗ ∗ indicates rejection of
the null of equal fit 0.01 confidence level. The symbols † † † and ∧ ∧ ∧ indicated that F is above
the appropriate critical values for worst-case size below 0.075, and best-case power above 0.95,
respectively. Both T

RV and the F -statistics account for market-level clustering.

In Simulation 1 we consider constant marginal costs (γ = 0) and use a single rival cost
shifter as an instrument. With a large F -statistic and significant RV test statistic (TRV =

−2.5), the results confirm that a researcher can falsify a wrong model of conduct with a
single relevant instrument when marginal costs are constant (Dearing et al., 2024). However,
once we introduce economies of scale (γ = −0.5) in Simulation 2 while maintaining the single
rival cost shifter instrument, both statistics drop to near zero, indicating a complete failure
of falsification as predicted by Remark 5.

In line with Remark 6, adding a second rival cost shifter in Simulation 3 fails to resolve
this problem. These instruments are not economically distinct, and yield an F -statistic of
only 0.2, indicating they remain weak for testing. The breakthrough comes in Simulation 4,
where we pair a rival cost shifter with an own product characteristic - these are economically
distinct instruments and available in standard datasets, in line with Remark 7. These
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instruments successfully falsify the wrong model even with non-constant costs, yielding
both a significant test statistic (TRV = −3.2) and strong instruments (F = 1, 443.6). This
finding illustrates how instruments that affect the environment through different economic
channels can overcome the challenges posed by non-constant marginal costs.

The final two specifications further validate our theoretical framework by exploring
alternative instrument pairs, further illustrating Remarks 6 and 7 . Simulation 5 combines
a rival cost shifter with a rival product characteristic, but these instruments fail to be
economically distinct and provide no power for testing. In contrast, Simulation 6 pairs
own and rival product characteristics, achieving strong power as diagnosed by the effective
F -statistic (F = 4, 189.4) and clear rejection of the wrong model (TRV = −5.0).

Panel B reports the estimated economies of scale parameters (γ) under both Bertrand
and Cournot specifications across our experiments. These estimates highlight how instru-
ment choice affects our ability to separately identify cost structure and conduct. With
weak instruments (columns 2, 3, and 5), the estimates vary substantially between models.
In contrast, when using economically distinct instruments (columns 4 and 6), we obtain
more stable and similar estimates across specifications.

Appendix D Additional Results, Counterfactuals, and Ro-
bustness

D.1 Additional Results

Full Parameter Estimates from Marginal Cost Regressions: Table 3 reports the
economies os scale parameters obtained from the regression in Equation 3 for the five models
of conduct we consider in the car industry. In Table 11, we report all parameter estimates
from these regressions.
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Table 11: Full Implied Marginal Cost Regression Results

Mixed Models

Bertrand Cournot Asian Bertrand US Bertrand Europe Cournot

Constant −6.658 −7.270 −6.795 −6.563 −6.618

(1.015) (1.042) (1.010) (1.001) (1.009)

RXR 0.047 0.050 0.046 0.046 0.047

(0.037) (0.037) (0.037) (0.037) (0.037)

t −0.124 −0.110 −0.115 −0.124 −0.125

(0.014) (0.014) (0.014) (0.014) (0.014)

t
2

0.002 0.002 0.002 0.002 0.002

(0.000) (0.000) (0.000) (0.000) (0.000)

log(height) −0.884 −0.949 −0.903 −0.909 −0.882

(0.142) (0.146) (0.142) (0.142) (0.142)

log(footprint) 0.020 0.011 0.009 0.005 0.018

(0.152) (0.155) (0.151) (0.152) (0.152)

log(horsepower) 0.437 0.469 0.449 0.446 0.437

(0.047) (0.049) (0.048) (0.047) (0.047)

log(MPG) 0.310 0.312 0.313 0.303 0.309

(0.074) (0.075) (0.073) (0.073) (0.073)

log(curbweight) 1.353 1.414 1.361 1.364 1.352

(0.121) (0.122) (0.119) (0.121) (0.121)

log(# trims) 0.016 0.012 0.013 0.014 0.016

(0.016) (0.016) (0.016) (0.016) (0.016)

Release Year −0.130 −0.130 −0.130 −0.128 −0.130

(0.028) (0.029) (0.028) (0.028) (0.028)

SUV 0.043 0.040 0.045 0.046 0.043

(0.024) (0.025) (0.024) (0.024) (0.024)

Truck −0.156 −0.204 −0.179 −0.150 −0.157

(0.038) (0.040) (0.038) (0.037) (0.038)

Van −0.121 −0.145 −0.128 −0.114 −0.121

(0.041) (0.042) (0.041) (0.041) (0.041)

PHEV/EV 0.216 0.229 0.222 0.224 0.216

(0.045) (0.045) (0.045) (0.045) (0.045)

Sport 0.094 0.099 0.097 0.092 0.095

(0.027) (0.027) (0.027) (0.026) (0.026)

Years Since Design −0.003 −0.003 −0.003 −0.003 −0.003

(0.003) (0.003) (0.003) (0.003) (0.003)

log(qpjt) −0.119 −0.114 −0.115 −0.116 −0.118

(0.032) (0.033) (0.032) (0.032) (0.032)

Table reports full results of estimating Equation (3) via 2SLS under different models of conduct. Table
3 reports the economies of scale parameters from these regressions. Specifications include manufacturer
fixed effects. SE are clustered by car model.

54



Counterfactual Results under Bertrand with Constant Marginal Cost: In Table
12, we contrast the main results of our counterfactuals predicted under our preferred model
of conduct (Cournot with economies of scale) against counterfactual results predicted under
the standard model in the literature, Bertrand competition with constant marginal cost.
The results show the importance of accounting for cost and conduct, of which we highlight
three differences.

First, the trade literature has estimated pass-through effects of tariffs in the first Trump
administration to be around one. Under a model of Bertrand competition with constant
marginal cost, we find that prices of foreign-produced cars increase by 19.5% in C1 and
22.7% in C3, both of which correspond to a pass-through of the port cost of approximately
one (21.25%). Instead, Cournot with economies of scale predicts pass-through of the port
cost above one.

Second, the price effects for US models in C1 further underscores the importance of
learning conduct for predicting trade policy. Our preferred model predicts a price reduction
while the Bertrand model with constant marginal cost predicts a price increase. While
differences in both the model of conduct and the functional form of cost give rise to dis-
crepancies in the predicted price effects, the differences in cost play a larger role in our
application.

Third, the differences in equilibrium effects give rise to differences in predicted welfare
and employment effects. In C3, the Bertrand model with constant marginal costs under-
states the total effect on net surplus by over $6 billion. It also predicts less growth in
employment arising from the stacked tariffs.
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Table 12: Counterfactual Results under Alternative Models

Cournot, Econ. of Scale Bertrand, Constant MC

C1 C2 C3 C1 C2 C3

Price Effects (percent)

All Models 9.05 12.96 14.56 8.03 12.29 13.49

US Models −0.85 6.52 6.39 0.47 7.40 7.45

Non-US Models 24.21 22.83 27.07 19.59 19.79 22.72

Surplus Effects (billions $)

Consumer Surplus −25.91 −56.89 −59.27 −30.50 −59.16 −62.28

Manufacturer Profits −5.51 −16.31 −17.13 −6.03 −13.25 −13.98

Tax Revenue - car imports 13.47 17.93 15.57 17.88 22.01 19.65

Tax Revenue - parts imports 23.65 25.64 25.42 27.96

Total Net Surplus −17.95 −31.62 −35.19 −18.65 −24.98 −28.64

Employment Effects (thousands of jobs)

Car Assembly 68.7 32.65 40.28 52.32 23.79 30.12

Parts Manufacturing 38.3 3.44 3.33 24.67 −8.21 −9.74

Table reports effects of tariffs in Counterfactuals 1, 2, and 3 predicted by our preferred model (Cournot with
economies of scale) and the standard model in the literature (Bertrand with constant marginal cost). As there
is no uncertainty in cost function under the constant marginal cost assumption, we suppress standard errors for
Cournot with economies of scale (which were reported in Section 6).

D.2 Additional Counterfactuals

Which Car Models Would Exit?: While our main analysis examines medium-run effects
holding the product set fixed, manufacturers facing substantial profit declines might even-
tually discontinue certain models or relocate production. Table 13 examines this possibility
by identifying models at risk of discontinuation under tariff scenario C3.

To assess how car manufacturers’ product portfolios could be affected, we focus on
two popular segments (SUVs and sedans), and identify segment-specific profit thresholds
based on the lowest variable profit levels observed in the pre-tariff market—$16.3 million
for sedans (represented by the Fiat 500) and $21.3 million for SUVs (represented by the
Mitsubishi Outlander PHEV).36 These figures are consistent with other estimates in the
literature: Sabal (2025) quantifies median market entry costs for automobiles at $8-15
million. Models falling significantly below these thresholds post-tariff would be candidates
for exit or production relocation.

36We exclude from this analysis vehicles with less than 2,500 sales in 2018—these may not have been on
sale for the full year (e.g., because discontinued), or correspond to very small niches.

56



Table 13: Models at Risk Under Counterfactual C3

Car Model Profit (millions $) Assembly US Content (%) Profit Change (%)

Panel A: Sedan Segment
Honda Clarity PHEV 7.1 Japan 0 -94
Kia Stinger 8.6 Korea 0 -93
Ford Fusion PHEV 15.0 Mexico 30 -71
Nissan 370z 7.3 Japan 0 -70
Kia Cadenza 11.6 Korea 0 -62
Subaru BRZ 10.3 Japan 0 -56
Fiat 500 8.9 Mexico 19 -46
Fiat 124 Spider 11.6 Japan 0 -46
Mitsubishi Lancer 11.3 Japan 1 -37

Panel B: SUV Segment
Toyota Land Cruiser 3.1 Japan 5 -90
Mitsubishi Outlander PHEV 7.0 Japan 0 -67
Kia Niro PHEV 16.0 Korea 2 -34

The table reports models with the largest profit declines under the C3 tariff scenario, showing variable
profits under C3, assembly location, US parts content percentage, and percentage change in profits relative
to baseline.

In total, nine sedan models and three SUV models fall below the profit thresholds after
the tariffs are imposed. Table 13 reports those and their respective profit decline under
C3. For sedans, several models face severe profit reductions: the Honda Clarity PHEV
(94% decline), Kia Stinger (93% decline), Ford Fusion PHEV (71% decline) and Nissan
370z (70% decline). In the SUV segment, the model predict a large profit reduction for
the Toyota Land Cruiser (90% decline). These reductions would likely trigger production
decisions beyond price adjustments.

The assembly location and parts content data reveal clear patterns. Most severely af-
fected models are assembled in Asia (primarily Japan and Korea) with minimal US parts
content. For instance, the Honda Clarity PHEV, Kia Stinger, and Mitsubishi models all
show 0% US content. Instead, Mexican-assembled models have higher US content (30% for
the Ford Fusion PHEV and 19% for the Fiat 500), making them more vulnerable to the re-
ciprocal tariffs in C3. Beyond assembly location, the results highlight that some specialized,
low-volume models and electrified vehicles would be at risk. Eight of the nine most-affected
models are either niche performance vehicles (370z, Stinger, 124 Spider), more premium
offerings (Land Cruiser), or plug-in hybrid electric vehicles (Clarity PHEV, Fusion PHEV,
Outlander PHEV, Niro PHEV).

Reshoring Incentives Under Tariffs: The stacked and reciprocal tariffs in C3 create
complex incentives for manufacturers to adjust their supply chains. To explore these dy-
namics, we simulate a counterfactual scenario where each of the top-selling models increases
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its US/Canadian parts content by 10 percentage points after the implementation of C3 tar-
iffs, holding all other factors constant. This allows us to isolate the strategic incentives for
reshoring parts production on a model-by-model basis.

It is important to note that this exercise should be interpreted as an enhanced back-
of-the-envelope calculation rather than a full evaluation of parts sourcing decisions—this is
not a margin of decision that is directly captured by our model. Thus, we quantify only
the potential benefit of reshoring in terms of decreasing the tariff bill, while abstracting
from the costs and constraints that might make domestic sourcing more expensive or even
infeasible. In reality, manufacturers source parts globally for numerous reasons beyond
cost, including access to specialized expertise, quality considerations, capacity constraints,
and technological advantages. Our analysis thus quantifies only one side of the trade-offs
involved in the decision to reshore parts production, as it does not account for the potentially
substantial costs that led manufacturers to establish global supply chains in the first place.

Table 14: Effects of Increasing US Content by 10 Percentage Points Under C3

Car Model Price Effect(%) Share Effect(%) Profit Effect(%) US Content Assembly

C3 Change C3 Change C3 Change (%)

Ford F-Series 6.6 −1.1 −3.3 5.4 −1.2 7.1 53 US
Chevrolet Silverado 5.9 −1.5 3.6 10.5 2.2 12.0 46 US
Ram Pickup 6.0 −1.2 1.1 7.9 1.7 10.2 56 US
Toyota RAV4 29.0 2.2 −62.6 −4.0 −62.9 −3.9 35 J
Nissan Rogue 10.1 −1.7 8.7 8.8 13.1 10.2 25 US
Honda CR-V 13.1 −1.9 −13.2 8.8 −6.9 10.1 23 US
Toyota Camry 3.6 −1.7 18.6 9.6 20.1 10.3 65 US
Chevrolet Equinox 39.5 5.2 −77.8 −5.2 −78.5 −4.9 45 CN
Honda Civic 7.3 −1.3 7.5 5.4 12.6 6.0 48 US
Honda Accord 5.4 −1.9 5.8 11.1 10.6 12.1 65 US

The table reports effects for the top 10 models by 2018 sales volume. For each model, we show the
C3 tariff effect on price, market share, and profits (in percentage terms), followed by the change in
percentage points when that specific model increases its US parts content by 10 percentage points.
Assembly locations are US except for Toyota RAV4 (Japan) and Chevrolet Equinox (Canada).

Table 14 presents the results of this counterfactual for the top-selling models in 2018.
Several patterns emerge that highlight the complex incentives created by stacked and re-
ciprocal tariffs. First, increasing US parts content generally leads to lower price decreases
across most models, as indicated by the negative values in the price change column. For
example, the Honda CR-V would see a 1.9 percentage point reduction in its price increase
under C3, while the Toyota Camry would experience a 1.7 percentage point smaller price
increase.

However, the Toyota RAV4 and Chevrolet Equinox are exceptions. Despite being among
the most impacted models under C3 (with a 29% and 39.5% price increase, and a 62.9%
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and 78.5% profit decline, respectively), increasing their US content would counterintuitively
worsen their situation, with price effects increasing by an additional 2.2 and 5.2 percentage
points. This stems from the models’ foreign assembly location, where the reciprocal tariffs
create perverse incentives that penalize reshoring of production parts.

For market shares, the reshoring effects are generally positive for US-assembled vehi-
cles, with the Honda Accord showing the largest improvement (11.1 percentage points).
These share gains translate into profit gains, with all US-assembled models seeing profit
enhancements ranging from 6 to 12.1 percentage points.

These findings highlight three insights about reshoring incentives under a tariff regime
like C3. First, the benefits of increasing domestic content are not monotonic in initial US
content levels. For instance, the Honda Accord (65% US content) receives a larger profit
benefit (12.1 percentage points) from increasing its domestic content than the Honda Civic
(48% US content) with only a 6 percentage point improvement. Second, assembly location
alters the reshoring calculus. For the Toyota RAV4 assembled in Japan and Chevrolet
Equinox assembled in Canada, increasing US content actually amplifies its competitive
disadvantage in the C3 scenario.

In summary, while reshoring parts production could mitigate some negative tariff im-
pacts for certain models, the benefits are unevenly distributed and sometimes counterintu-
itive. A more complete analysis would need to weigh these tariff avoidance benefits against
the fundamental economic reasons that led to global sourcing in the first place. These
findings show how the complexity of global value chains can produce unexpected outcomes
when disrupted by stacked tariff policies, highlighting the importance of considering these
nuanced effects when evaluating trade interventions.

D.3 Robustness

Alternative Cost Specifications: In Table 15, we explore the sensitivity of our economies
of scale estimates to both functional form assumptions and the definition of the total pro-
duction at which economies of scales accrue. Unless noted, all regressions contain the full
set of exogeneous cost shifters and fixed effects in Table 11 and we rely on 2SLS estima-
tion using the instruments discussed in Section 5. In our main specification in Equation 3,
economies of scale accrue across units of a car model produced in a given country and we
adopt a log-log functional form for marginal cost. Column 1 reproduces our IV estimates
and Column 2 reports the OLS estimates: endogeneity attenuates the economies of scale,
as expected. Column 3 drops the SUV time trend from the regression while in Column 4,
we adopt a log-linear specification of marginal cost, including both total production and its
square (the implied economies of scale from these estimates is −0.19).

Finally, in Column 5, we allow economies of scale to accrue across the country-level pro-

59



duction of all car models using the same platform. A prominent feature of the car industry
is that car models in the same segment produced by the same manufacturer often share
the same engineering platform, meaning that they use the same mechanical underpinnings,
such as engine and transmission (Van Biesebroeck, 2003). Therefore, it is possible that
economies of scale and scope accrue at the platform level. The Markline data contains
information on car platforms, and we are able to construct platform data for around half
of the car models in our data.

Across specifications that we estimate via 2SLS, economies of scale estimates range from
-0.114 to -0.19, suggesting our main estimates are fairly robust to the functional form of
Equation 3 and the definition of qpt .

Table 15: Robustness of Cournot Implied Economies of Scale to Alternative Functional Forms

Dependent variable: log cC

Main OLS Drop SUV Log-Linear Platform

Spec Trend Quad Level

(1) (2) (3) (5) (8)

log(qpjt) −0.114 −0.038 −0.176

(0.033) (0.007) (0.042)

q
p
jt (100 ths) −0.299

(0.152)

(q
p
jt)

2 (100 ths) 0.034

(0.028)

log(Σj∈platformq
p
jt) −0.160

(0.050)

Table reports economy of scale estimates from log marginal cost regression in Equation 3 under Cournot
model of conduct. All regressions include the exogenous cost shifters and fixed effects reported in Table
11. Column 1 reproduces the main results in Table 3 - total production at the model-country level enters
in logs. Column 2 reports OLS results obtained without instruments. Column 3 removes the SUV time
trend. In Column 4, total production and its square enter in levels. Column 5 models total production
at the platform-model level. Standard errors clustered by car model in parentheses. 3,929 model-year
observations.
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Alternative Tariff Assumptions: Here, we explore the robustness of our results in
Counterfactual 3 to two maintained assumptions when computing our tariff counterfactuals.
First, when imposing tariffs on foreign car manufacturers, we modeled the port cost of a
vehicle as 80% of its retail price (in line with Goldberg, 1995). Alternatively, Coşar et al.
(2018) estimate the port cost to be 68% of the implied marginal cost. Column 3 of Table
16 reports results in Counterfactual 3 under this alternative assumption.

Table 16: Robustness of Counterfactual 3 Results to Alternative Tariff Assumptions

Parts Tariff Pass-Thru =

Tariff Effects Main Port Cost = 0.68 cm 0.2 1.2

Price Effects (percent)

All Models 14.56 11.33 10.11 15.71

(0.99) (0.88) (0.80) (1.06)

US Models 6.39 6.58 0.55 7.88

(0.10) (0.19) (0.34) (0.17)

Non-US Models 27.07 18.60 24.74 27.70

(2.51) (1.98) (2.51) (2.50)

Surplus Effects (billions $)

Consumer Surplus −59.27 −52.50 −33.30 −65.15

(0.57) (0.73) (2.45) (0.52)

Manufacturer Profits −17.13 −16.09 −7.98 −19.19

(0.80) (0.49) (1.10) (0.78)

Tax Revenue - car imports 15.57 14.93 13.90 16.02

(1.39) (0.96) (1.55) (1.32)

Tax Revenue - parts imports 25.64 24.80 6.04 29.62

(0.18) (0.26) (0.11) (0.29)

Total Net Surplus −35.19 −28.87 −21.34 −38.69

(1.10) (1.58) (2.31) (1.31)

Employment Effects (thousands of jobs)

Car Assembly 40.28 22.78 62.19 35.11

(3.93) (3.38) (8.00) (3.45)

Parts Manufacturing 3.33 −7.00 31.24 −3.35

(5.26) (4.09) (10.31) (4.91)

Table reports effects of stacked and reciprocal tariffs in Counterfactual 3 under alternative tariff assump-
tions. Column 2 reproduces our main results while Column 3 assumes the port cost of a vehicle is 68% of
implied marginal cost. Columns 3 and 4 assume the pass-through rate of parts tariffs to input prices for
car manufacturers is 0.2 and 1.2 respectively. Standard errors in parentheses.
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Second, when levying tariffs on car parts, we assumed that the pass-through of these
tariffs to the input prices paid by car manufacturers was one. Columns 4 and 5 of Table
16 report C3 results for alternative assumptions on the pass-through rate (0.2 in Column
4 and 1.2 in Column 5). The overall results hold under these alternative assumptions:
stacked and reciprocal tariffs increase overall car prices and reduce consumer and producer
surplus. Overall, total net surplus is lower with tariffs and the employment effects imply
that the surplus reduction per job created is less than the average manufacturing wage in
these industries.
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