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Abstract

Econometric testing of models of firm conduct when true markups are unobserved
is based on a falsifiable restriction (Berry and Haile, 2014). We reinterpret this restric-
tion to shed light on the economic determinants of model falsifiability. We show that
whether a model of conduct can be falsified largely depends on an interplay between
the variation induced by the instruments, and the differences in pass-through matrices
between that model and the truth. Through a set of examples that include the leading
models used in empirical work, we illustrate why falsification succeeds or fails.

1 Introduction

Learning the nature of firm conduct is a fundamental goal in industrial organization (IO), as
firm conduct is either the object of interest for a researcher or part of a model used to eval-
uate policy. Examples include investigations into the nature of vertical relationships (e.g.,
Villas-Boas, 2007), whether firms compete in prices or quantities (e.g., Feenstra and Levin-
sohn, 1995), collusion versus competitive pricing (e.g., Miller and Weinberg, 2017), intra-firm
internalization (e.g., Michel and Weiergraeber, 2018), common ownership (e.g., Backus, Con-
lon, and Sinkinson, 2021), nonprofit conduct (e.g., Duarte, Magnolfi, and Roncoroni, 2021),
and labor monopsony power (e.g., Roussille and Scuderi, 2021).

An existing econometric toolbox allows researchers to test models of conduct with market-
level data when true markups are unobserved. Seminal work by Bresnahan (1982) shows
that distinguishing models of conduct requires exogenous variation in market conditions,
used to form instruments. In a differentiated products environment, Berry and Haile (2014)
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formalize this intuition into a falsifiable restriction and broaden the set of potential instru-
ments. Recent work (Backus, Conlon, and Sinkinson, 2021; Duarte, Magnolfi, Sølvsten, and
Sullivan, 2022) offers inferential advances in conduct testing. Duarte et al. (2022) show that
reliable inference on conduct can be obtained using the test developed in Rivers and Vuong
(2002) (RV) so long as the instruments are strong. Both the hypotheses of the RV test and
the notion of instrument strength depend crucially on the falsifiable restriction.1

This falsifiable restriction is primarily a statistical condition; in this paper, we aim to
better understand it from an economic point of view. We consider a differentiated products
setting with unobservable demand and cost shocks, where the researcher already knows the
demand system. We convert the falsifiable restriction in Berry and Haile (2014) into a
condition on marginal effects of instruments on markups. This highlights two distinct effects
instruments may have on markups – a direct effect when they enter the markup function,
and an indirect effect through equilibrium prices.

For many commonly-used demand environments (such as logit and nested logit) and many
instrument choices (such as product characteristics and rival cost shifters), the direct effect
is easy to account for. In these settings, and assuming constant marginal costs, we show that
a model will be falsifiable as long as the difference in inverse pass-through matrices between
this model and the true model is not orthogonal to the variation in outcomes induced by the
instruments. This reduces to a simple theoretical condition on the two models’ pass-through
matrices. This condition is more stringent for cost side instruments: within this class, any
model falsified by cost side instruments is also falsified by demand side instruments. As one
example, if pass-through matrices for both the true model and the model to be falsified are
diagonal matrices but are different from one another, the model will be falsified by demand
side instruments but not by cost side instruments.

While the importance of conduct in determining pass-through (and other economic out-
comes) is well understood (Weyl and Fabinger, 2013), in this paper we establish the converse
link: differences in pass-throughs is what often permits falsification of models of conduct.2

We highlight this point by considering several examples of standard models of conduct in
IO. While some knife-edge exceptions exist, we show that for most models, falsification is
possible with at least one standard set of instruments.

We go on to consider falsification in settings where marginal costs may vary with the
quantity produced. Falsification is typically harder in this case, as the unknown cost function
can hide differences in markups. While differences in pass-throughs are still important,

1In Appendix A, we discuss the connection to the inferential setup in Duarte et al. (2022).
2In a similar spirit, Miller, Osborne, and Sheu (2017) suggest that estimates of pass-through can be used

to recover a conduct parameter in a symmetric oligopoly model.
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having multiple economically distinct sources of variation may be necessary for falsification.
This is related to the argument in Bresnahan (1982) and Lau (1982), who emphasize the need
for demand rotators in a setting without product differentiation. We show that in our setting,
multiple instruments must have differential effects on either equilibrium market shares or on
the difference in markups between the true model and the model to be falsified. Certain
particular combinations of instruments violate this condition and therefore do not permit
falsification. However, we give intuition to support the view that differentiated-products
settings typically have rich enough variation to falsify most models that could be falsified if
marginal costs were constant.

Our results provide a framework – grounded in economics – for applied researchers em-
pirically testing models of conduct. Although we do not consider testing conduct in finite
sample in this paper, the falsification perspective that we adopt underpins the econometric
procedures that are used in empirical work. In particular, our framework can be useful for
choosing instruments – enabling researchers to determine ex ante what standard sources of
variation in the data could distinguish between particular candidate models, or motivating
and guiding the use of new sources.

Our work relates to the nonparametric tests of the Cournot model in homogenous-goods
settings proposed by Carvajal, Deb, Fenske, and Quah (2013) and Cherchye, Demuynck, and
De Rock (2013). The former takes a revealed-preference approach using demand shifters but
assumes no unobserved cost shocks. Closer to our approach, the latter relies on first-order
conditions, checking consistency of the effect of multiple cost and demand shifters. Both find
Cournot oligopoly has testable implications under mild assumptions.

Our work also relates to early literature in empirical IO which leveraged the implications
of pass-through rates for testing conduct (Sumner, 1981). As noted by Bulow and Pfleiderer
(1983), however, direct implications of pass-throughs for conduct depend on strong assump-
tions on demand, even in models of homogeneous goods. Panzar and Rosse (1987) and
Ashenfelter and Sullivan (1987) derive pass-through implications of monopoly and oligopoly
models that do not rely on demand estimates, and use these implications for testing. The
environments considered in this early literature feature homogeneous products, and no un-
observable components of demand and cost. Like Berry and Haile (2014), we consider a
more general environment where testing requires estimates of demand. The link we establish
between pass-through and falsifiability of models of conduct formalizes the original intuition
that pass-through summarizes fundamental implications of models of firm conduct.
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2 Illustrative Example

A researcher observes prices pjt and market shares sjt for two single-product, constant-
marginal-cost firms j = 1, 2 selling differentiated products in multiple markets indexed by t.
She already knows the demand system, and wants to know whether she can falsify a model
of perfect competition, i.e., rule out both firms pricing at marginal cost in each market.

Suppose the true model generating the data is the familiar Bertrand-Nash model of
competition in prices. Each firm sets price pjt in market t to solve

max
pjt

(pjt − c0jt)sjt(pt)

where c0jt is the marginal cost faced by the firm and pt is a vector of both firms’ prices. The
two firms’ first-order conditions sjt + (pjt − c0jt)

∂sjt
∂pjt

= 0 can be rewritten in terms of the
markup function, which for the true Bertrand model m = B is

∆Bt =

[
p1t − c1t

p2t − c2t

]
=

 s1t
−∂s1t/∂p1t

s2t
−∂s2t/∂p2t

 .
The alternative model the researcher wants to falsify is perfect competition or m = PC,
characterized by zero markups ∆PCt = 0.

In an ideal environment where the researcher could directly observe actual markups ∆0t

(or firms’ actual marginal costs c0t), the markups she sees, generated by Bertrand-Nash
competition, would be strictly positive, which would allow her to falsify the model of perfect
competition. However, in most empirical applications the researcher does not observe either
costs or markups directly. To distinguish conduct, she must instead rely on exogenous
variation in cost or demand across markets.

To see how this works, suppose the researcher observed outcomes in two markets t and t′

with the same demand system, and suppose firm 2’s marginal cost was known to be higher
in market t′, c02t

′ > c02t, while firm 1’s marginal cost was known to be the same in the two
markets. She would observe different outcomes in the two markets, pt′ 6= pt and st′ 6= st;
while she knows that the difference in prices and shares is due entirely to the exogenous
change in the marginal cost of firm 2, the true costs in both markets are still unobserved.
Firm 1’s true cost is the same across markets, or dc01 = c01t

′ − c01t = 0. For any candidate
model m, let cmt denote the marginal costs inferred from observables under model m. The
equation dcm1 = 0, then, is a falsifiable restriction; if this restriction is violated, the model
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is falsified by the variation in firm 2’s cost across markets.3 Thus, in this example, a model
of conduct can be falsified only insofar as the exogenous variation in rival’s cost induces a
change in the implied cost for a firm. If instead modelm implies the same changes in marginal
costs as the true model, then model m is not falsified by that exogenous source of variation.

The intuition above is in line with Bresnahan (1982) and Berry and Haile (2014).4 While
the existing literature discusses the mechanics of how to falsify a model of conduct, we seek
to expand on the economic underpinnings of falsification. We will show that the economic
features of a model needed for falsification are summarized in the cost pass-through implied
by the model. Writing the first-order conditions for any model m in market t as

Fm(pt, ct) = pt − ct −∆mt = 0 (1)

equilibrium prices under model m are an implicit function of costs, pt = pm(cmt), defined as
the solution to Fm(pm(cmt), cmt) = 0. Given a model m and observed prices pt, the implied
costs for model m, cmt, are the value of ct satisfying the first-order conditions. If we further
assume that the function mapping costs to equilibrium prices, pm(·), is invertible, the implied
marginal costs under model m can be written as cmt = p−1

m (pt).
The Jacobian matrix of prices with respect to marginal costs under model m, Pmt = dpm

dct
,

gives the effect on equilibrium prices that model m predicts would result from changes in
marginal costs; we refer to Pmt as the absolute cost pass-through matrix of model m. For the
true model, this implies that for a small change in marginal costs dc0t, the resulting change
in prices is dpt = P0tdc0t. By the inverse function theorem, the inverse pass-through matrix
dcm
dpt

= P−1
mt measures how the marginal costs implied by model m are affected by changes

in equilibrium prices. Changes in the implied costs under model m in response to a change
dc0t in actual costs can thus be expressed as

dcmt = P−1
mt dpt = P−1

mt P0tdc0t

(The change in true costs dc0t induces a change P0tdc0t in observed market prices, which
then induces a change P−1

mt P0tdc0t in the marginal costs inferred under model m.)
Because the falsifiable restriction is linked to pass-throughs, we next derive these matrices

for specific models. For any model m, pm is defined implicitly by the firms’ first-order
3Notice that the variation must be excluded from the firm’s own cost. In this example, there is no useful

restriction implied on firm 2’s conduct.
4In particular, this example is a instance of Case 1 in Section 6 of Berry and Haile (2014).
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conditions as shown above. The Implicit Function Theorem gives

Pmt =
dpm(·)
dct

= −
[
dFm
dpt

]−1 dFm
dct

= (I −H∆mt
)−1 (2)

where H∆mt
= d∆mt

dpt
. Recall our assumption that the true model is competition in prices, and

suppose for simplicity that the demand system is simple logit, characterized by market shares

sjt =
exp(xjtβ − αpjt)

1 + exp(x1tβ − αp1t) + exp(x2tβ − αp2t)
,

where xjt are characteristics of product j in market t, and α and β are coefficients. In that
case, we can calculate the true pass-through matrix to be

PBt =
(1− s1t)

2(1− s2t)
2

1− s1t − s2t

 1
1−s2t

s1ts2t
(1−s1t)

2

s1ts2t
(1−s2t)

2
1

1−s1t

 .
The model we wish to falsify, perfect competition, has ∆PCt = 0 and therefore H∆PCt

= 0

and PPCt = P−1
PCt = I. For a small change in c02 across markets, then, the change in costs

inferred under perfect competition would be

dcPC = P−1
PCtPBtdc0 ∝ I

 1
1−s2t

s1ts2t
(1−s1t)

2

s1ts2t
(1−s2t)

2
1

1−s1t

[ 0

dc02

]

where ∝ denotes proportionality. Notice that, whenever dc02 6= 0, the falsifiable restriction
is violated as dcPC1 6= 0, allowing the researcher to falsify the model of perfect competition.

Economically, what happened should be clear. The true model, Bertrand-Nash compe-
tition, generates positive pass-through of rival’s costs.5 Under the alternative model, prices
are equal to marginal costs, so the increase in p1 is interpreted as an increase in c1, violating
the falsifiable restriction that c1t did not change.

In this example, the two models made very different predictions – zero versus positive
rival cost pass-through – making falsifiability obvious. However, the two models’ predictions
need not be so different for falsifiability to hold. The expression for dcPC above suggests
that whenever an off-diagonal term [P−1

mt P0t]ij is non-zero, a shock to product j’s marginal
cost will be interpreted under the wrong model as a change in product i’s marginal cost.
In the next section, we will establish that this is in essence what is needed for falsifiability

5This is not special to logit demand; under a wide range of demand systems, different firms’ prices are
strategic complements, so an increase in c2t leads to increases in both firms’ prices.
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under rival cost instruments in a more general setting.
For an example where falsification is not so easily achieved, suppose that instead of

competition in prices, the true model generating the data was Cournot competition (quantity-
setting), with each firm simultaneously choosing market shares sjt to maximize sjt(pjt(st)−
c0jt). The firms’ first-order conditions pjt − c0jt + sjt

∂pjt
∂sjt

= 0 give the markup function

∆Ct =

[
p1t − c01t

p2t − c02t

]
=

[
−s1t

∂p1t
∂s1t

−s2t
∂p2t
∂s2t

]

By the inverse function theorem,
[
dpt
dst

]
=
[
dst
dpt

]−1

; in the case of simple logit demand, we
can calculate the pass-through matrix for the Cournot model as

PCt = (I −H∆Ct
)−1 =

[
1−s1t−s2t

1−s2t
0

0 1−s1t−s2t
1−s1t

]

While the result is rather knife-edge and specific to logit demand, the Cournot model predicts
zero pass-through of rival costs. This means we can’t falsify perfect competition based on
variation in rival costs when the true model is Cournot. A change in firm 2’s true cost c02

across markets would induce a change

dcm = P−1
mt P0tdc0 =

[
1 0

0 1

][
1−s1t−s2t

1−s2t
0

0 1−s1t−s2t
1−s1t

][
0

dc02

]

in the costs implied by model m, with dcm1 = 0 satisfying the falsifiable restriction. Math-
ematically, since Pmt and P0t are both diagonal matrices, P−1

mt P0t is diagonal as well. Eco-
nomically, since Cournot competition implies zero pass-through of rival costs, a change in c2

leads to no change in p1 across markets, leading to no change in the marginal cost inferred for
product 1 under perfect competition. As we’ll formalize below, more generally, when P−1

mt P0t

is a diagonal matrix, rival cost shifters can’t falsify model m when the truth is model 0.
These two examples highlight an important point: falsifiability of a model using exoge-

nous variation is not about the level of markups, but the slope (how they respond to changes
in the exogenous variables). The Cournot model predicts higher markups than the Bertrand
model,6 and in this sense is “further away” from the model of perfect competition. However,

6This can be shown to hold much more generally; in the two-firm case, firm 1’s markups under the two

models are ∆Ct1 = −s1t
∂s2t
∂p2t

(
∂s1t
∂p1t

∂s2t
∂p2t
− ∂s1t

∂p2t

∂s2t
∂p1t

)−1

and ∆Bt1 = −s1t

(
∂s1t
∂p1t

)−1

, and ∆Ct1 > ∆Bt1 easily

follows as long as ∂s1t
∂p2t

and ∂s2t
∂p1t

are nonzero and have the same sign.
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because the pass-through patterns under perfect competition are more similar to those of
the Cournot model than the Bertrand, perfect competition can be falsified under the latter
model but not under the former.

In the case of Cournot competition, then, how should we proceed? Even when all off-
diagonal terms of P−1

mt P0t are zero and therefore rival cost shifters can’t falsify the model,
exogenous variation in product characteristics can still work in many cases. Under simple
logit, product characteristics and price enter demand only through an index δjt = xjtβ−αpjt
which shifts the mean consumer value for good j in market t. In that case, a change in a
product characteristic has the same effect on markups as a change in costs – specifically,
d∆t

dx(k)jt

= −β
(k)

α
d∆t

dcjt
. Thus, if the Cournot model predicts no pass-through of rivals’ costs, it also

predicts no pass-through of rivals’ product characteristics. However, exogenous variation in
characteristics of product j itself can serve to falsify conduct insofar as they are excluded
from j’s marginal cost. Under the Cournot model, a product’s characteristics will shift that
same product’s price; as long as the change in characteristics is independent of cost, this will
falsify the perfect competition model. More generally, for demand systems where product
characteristics and price enter demand only through mean utility,7 we’ll establish that model
m can typically be falsified by variation in product characteristics as long as P−1

mt P0t is not
equal to the identity matrix.

Again, in the current example, falsifiability is obvious, since in the model to be falsified
product characteristics excluded from cost should not move prices at all, while they do in the
true model. However, once again, a model need not make such starkly “wrong” predictions
to be falsifiable. As long as model m and the true model make different predictions about
pass-through, the changes in equilibrium prices induced by changes in each product charac-
teristic under the true model cannot be rationalized by model m, and product characteristics
excluded from costs suffice to falsify model m.

In the next section, we formalize our results in a more general setting using exoge-
nous variation to construct instruments. We return in Section 4 to additional examples of
commonly-used models of competition for more intuition on what is behind falsifiability.

3 General Framework

3.1 Environment and Notation

We consider falsification of models of firm conduct using data across many markets. A set
of multi-product firms compete in each market t; for simplicity, we assume the same set of J

7When characteristics or price enter outside mean utility, a more complicated result, Proposition 1, holds.
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products is sold in every market, although their characteristics may differ across markets. For
each product and market combination (j, t), the researcher observes price pjt, market share
sjt, a vector of product characteristics xjt, and a vector of cost shifters wjt that affects the
product’s marginal cost.8 For any variable ajt, let at denote the vector of values for all prod-
ucts j in market t. We assume that, for all markets t, the demand system is st = s(pt, xt, ξt),
where ξt is a vector of unobserved product characteristics. To focus on the supply side, we
assume that the demand system is already known to the researcher.9 We normalize market
size to 1, so that quantity qjt and market share sjt can be used interchangeably.

The data in each market t are generated by equilibrium play in some true model of firm
behavior, characterized by a system of first-order conditions,

pt = ∆0t + c0t, (3)

where ∆0t is the true vector of markups in market t and c0t is the true vector of marginal
costs. Under each model m, we can calculate the implied markups ∆mt as a known function
of observables and demand primitives. Implied marginal costs cmt can therefore also be cal-
culated via a model-specific version of the first-order conditions in Equation (3), as pt−∆mt.

For the first-order conditions of any model m to characterize a well-defined empirical
model, we require the following, analogous to Assumption 13 in Berry and Haile (2014):

Assumption 1. (Equilibrium Uniqueness) For any model m, including the true model,
either there exists a unique equilibrium, or the equilibrium selection rule is such that the
same pt arises whenever the vector (cmt, xt, ξt) is the same.

3.2 An Econometric Perspective on Falsifiability

Unlike the example of Section 2, researchers typically cannot hold demand and all but one
cost fixed; unobserved shocks will vary across markets along with any instrument. Following
the literature, we separate observable and unobservable parts of marginal costs by assuming
that costs are separable in a function of observable cost shifters wjt and quantities, and in an
unobserved shock, or c0jt = c̄0j(qjt,wjt) + ω0jt. While the researcher can control for wjt, she
cannot keep ω0jt fixed across markets. Instead, the researcher can construct instruments zjt
that are mean independent of the unobserved cost shocks under the true model. Formally,
we assume that the instruments zjt satisfy the following exclusion restriction:

8Although xjt and wjt could include the same variables, we maintain for simplicity that they are distinct.
9See Berry and Haile (2014) for conditions by which the demand system is nonparametrically identified.
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Assumption 2. (Instrument Exogeneity) Marginal costs are c0jt = c̄0j(qjt,wjt) + ω0jt for
each j, and zjt is a vector of K excluded instruments such that E[ω0jt | wjt, zjt] = 0.

Berry and Haile (2014) provide several sources of variation that can be used to construct
instruments. We will focus on two of these, rival cost shifters and own and rival product
characteristics, as these are standard sources of variation used in empirical work and illus-
trate the main forces behind falsification. We refer throughout to cost side instruments and
demand side instruments, respectively, as those formed with this variation.

For now, we simplify the environment with the following assumption:

Assumption 3. (Constant Marginal Cost) Marginal costs are constant in quantities and
only depend on the observable cost shifters wjt, or c̄0j(qjt,wjt) = c̄0j(wjt) for all j.

In Section 5 we remove this assumption and extend the results to any cost structure where
ω0jt is additively separable.

When true markups are unobserved, what we know about the true model is that the
condition E[ω0jt | wjt, zjt] = 0 holds for the true cost function. For a candidate model
m and candidate cost function c̄mj, we can define ωmjt, a model specific analog of ω0jt, as
ωmjt = pjt −∆mjt − c̄mj(wjt); the expression E[ωmjt | wjt, zjt] = 0 is a falsifiable restriction,
the analogue of the condition in Theorem 9 of Berry and Haile (2014). We will say a model
m is falsified by the instruments zjt if there are no cost functions {c̄mj(wjt)}Jj=1 satisfying
this falsifiable restriction almost surely over the values of wjt and zjt.

As prices in the data are generated from the true model, we can rewrite this expression
as ωmjt = ∆0jt −∆mjt + c̄0j(wjt)− c̄mj(wjt) + ω0jt. From this, we can restate the falsifiable
restriction as follows.10

Lemma 1. Under Assumptions 1-3, model m is falsified by instruments zjt if and only if
for some j there exists no function c̄mj such that

E[∆0jt −∆mjt | wjt, zjt] = c̄mj(wjt)− c̄0j(wjt) a.s.

Here, as in the rest of the section, the expectation is taken over realizations of unobservables,
and almost surely (a.s.) refers to realizations of the exogenous observables (wjt, zjt).

The restriction in Lemma 1 is a statistical condition for falsification of a model of con-
duct, but it does not speak to the features of a model that allow falsification. To begin to
address this question, it is useful to restate Lemma 1 in terms of the marginal impacts of the
instruments on markups. To do this, we will assume markups do not move discontinuously
as instruments change:11

10Proofs of all lemmas, propositions, and corollaries are in Appendix B.
11Assumption 4 holds for all models in this paper, and for all standard models.
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Assumption 4. (Continuous Markups) For any model m, for any j, E[∆mjt | wjt, zjt] is
absolutely continuous in zjt.

Based on Lemma 1, for a model not to be falsified, the conditional expectation of ∆0jt−
∆mjt must match the difference in implied cost at each value of the instruments zjt. As
instruments are excluded from cost, a marginal change in any of the K instruments has no
effect on the implied costs for either model. This means that if a model is not falsified, the
impact of the instruments on the conditional expectation of ∆0jt −∆mjt must be zero. We
focus on the limit of this difference,

lim
h→0

E[∆0jt −∆mjt | wjt, zjt = z̃jt + hk]− E[∆0jt −∆mjt | wjt, zjt = z̃jt]

h

where hk is a K-vector of zeros with the scalar h in the k-th position. The marginal effect
of the k-th instrument z(k)

jt on the conditional expectation of ∆0jt − ∆mjt is the average
difference in the marginal effect of z(k)

jt on ∆0jt and ∆mjt, giving the following:

Lemma 2. Under Assumptions 1-4, model m is falsified by instruments zjt if and only if
for some j and k,

E

[
d∆0jt

dz(k)
jt

−
d∆mjt

dz(k)
jt

| wjt, zjt

]
6= 0 w.p.p.

The derivative of markups with respect to the instruments is an object whose properties
depend on the economics of the model, so this lemma allows us to connect the econometric
perspective on falsifiability with a more theoretical view inspired by the example in Section
2. To falsify a model, variation in the instruments must induce differential changes in the
implied markups for that model and the true model. However, since demand and cost
shocks are unobserved, it is not possible to isolate changes solely caused by the instruments;
we therefore need the marginal impact of the instruments to differ across the two models
when we average over the unobserved shocks. Having restated the falsifiable restriction in
terms of marginal effects, we now explore the relevant economic features for falsifiablility.

3.3 Role of Pass-Through

In the example in Section 2, falsifiability depended on pass-through of costs. We now show
that pass-through also helps determine falsifiability in a more general setting. To see this,
we note that the markup function for either model is a function of two endogenous variables,
market shares and prices. As the demand system makes market shares a function of prices, we
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can write the vector ∆mt as a function of prices, instruments and other exogenous variables,

∆mt = ∆m(pt, zt,wt, xt, ωmt, ξt).

Instruments may thus affect markups either directly, or through their effect on prices.
In light of Lemma 2, we are interested in the average difference in the causal effects of

an instrument z(k)
jt on model m and the truth. Letting (A)j denote the jth row of a vector

or matrix, we have

d∆0jt

dz(k)
jt

−
d∆mjt

dz(k)
jt

=
∂∆0jt

∂z
(k)
jt

−
∂∆mjt

∂z
(k)
jt︸ ︷︷ ︸

Direct Effect

+

(
∂∆0t

∂pt
− ∂∆mt

∂pt

)
j

dp0

dz(k)
jt︸ ︷︷ ︸

Indirect Effect

where p0(·) is the function mapping primitives to equilibrium prices under the true model.
From this expression we see two distinct effects of instruments on the difference in markups.
The first is the direct effect of instruments, or ∂∆mjt

∂z
(k)
jt

− ∂∆0jt

∂z
(k)
jt

. This element is non-zero when-

ever instruments such as product characteristics differentially enter the markup functions
of model m and the truth. The second term represents the indirect effect, which happens
through prices. As this term is more complex, we further investigate its economic content.

For any model m we can compute the cost pass-through matrix Pmt as in Section 2 via
the Implicit Function Theorem. Note that we can rewrite the difference in price derivatives
of markups above as a function of inverse pass-through because P−1

mt =
(
I − ∂∆mt

∂pt

)
. Inverse

pass-through matrices are well-defined under the following assumption:

Assumption 5. (Invertibility of Pass-throughs) For any model m, in any market t, the
pass-through matrix Pmt has full rank.

This assumption has economic content, as it requires that each product has non-zero pass-
through for at least one cost (either own or rival) in the market. Moreover, pass-through
vectors for each product cannot be linear combinations of those of other products, meaning
that costs must affect different products in a distinct way. This is satisfied in most models,
as the pass-through of own cost that is measured by the main diagonal of Pmt is typically
different than the pass-through of rival costs. We illustrate the content of this assumption
in Section 4.2.

We can then establish the following:
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Proposition 1. Under Assumptions 1-5, a model m is falsified by instruments zjt if and
only if for some j and k,

E

[
∂∆0jt

∂z
(k)
jt

−
∂∆mjt

∂z
(k)
jt

+
(
P−1
mt − P−1

0t

)
j

dp0

dz(k)
jt

| wjt, zjt

]
6= 0 w.p.p. (4)

This proposition casts falsification in terms of the direct and indirect effect of the instru-
ments. When the instruments move the markup functions directly and differentially, this will
likely enable falsification. Furthermore, if instruments affect prices, falsification depends on
(P−1

mt −P−1
0t ), the difference in inverse pass-throughs of the true model and model m. Similar

to the intuition in the two-firm example in Section 2, differences in inverse pass-throughs
allow the variation in prices induced by the instruments to result in different implied costs.

Note that the difference in inverse pass-throughs is multiplied by dp0
dz(k)jt

, the variation in

prices induced by the instruments. Differences in pass-throughs only matter for falsification
if instruments move prices. In turn, this depends on the pricing function of the true model
of conduct p0. Taken together, the term

(
P−1
mt − P−1

0t

)
j

dp0
dz(k)jt

represents the indirect effect of

the instruments through prices.
To gain further insight, we interpret Proposition 1 separately for cost side instruments

(based on rival cost shifters) and demand side instruments (based on product characteristics).
To do that, we restrict the nature of markup functions according to the following assumption:

Assumption 6. (No Abnormal Effects of Primitives) For any modelm, the markup function
∆m (i) depends on costs only through their effect on equilibrium prices, and (ii) depends on
product characteristics only through their effect on shares st and demand derivatives ∂st

∂pt
.

As we show in Appendix C, this assumption holds in a variety of models where firms
maximize profits under various assumptions on what their rivals are holding fixed; or if firms
maximize any weighted sum of their own profits, other firms’ profits, and consumer surplus
(or total welfare). It also holds in different variations of the price or quantity leadership
model where some firms move first and others, seeing their actions, move second.12

Falsifiability with cost side instruments

The implications of the proposition are particularly stark when the instruments are formed
with rival cost shifters. Under Assumption 6, the instruments have no direct effect on

12Where it fails is with “cost-plus” pricing – markups which are a fixed percentage of costs – or when
firms’ objective functions are something other than profits (for example, revenue, or a weighted average of
profit and revenue). We discuss falsification for these models in Section 4.2.
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markups, and enter either markup function only through p0(·). For simplicity, we further
assume that the true marginal cost is linear in cost shifters:

Assumption 7. (Linear Marginal Cost) c̄0j(wjt) = τwjt, with all elements of τ nonzero.

Next, we define the J × J matrix [P−1
m P0]? by

[P−1
m P0]?j = E

[
P−1
mt P0t|wjt, zjt

]
j

That is, [P−1
m P0]? is the expected value of P−1

mt P0t, but where the expectation in the j-th
row is taken conditional on the realized values of product j’s cost shifters and instruments
(wjt, zjt). Thus, [P−1

m P0]? is a function of the full vector of observables (wt, zt), with each
row depending on a different subset of those observables. This matrix arises from Equation
(4) because dp0

dz(k)jt

will often be proportional to P0t, so (P−1
mt − P−1

0t ) dp0
dz(k)jt

∝ (P−1
mt P0t − I).

The example in the previous section suggested that falsifiability of a model m depends
on the characteristics of the matrix P−1

mt P0t. In the richer setting with observable and unob-
servable variation, falsifiability depends on the characteristics of [P−1

m P0]?:

Corollary 1. Suppose that for each product j, the vector of instruments zjt includes a cost
shifter of every rival product. Under Assumptions 1-7, model m is falsified by the instruments
if with positive probability over (wt, zt), the matrix [P−1

m P0]? is not diagonal.

The intuition for this result is that for ` 6= j, [P−1
mt P0t]j,` is proportional to the marginal

effect of product `’s marginal cost c0`t on product j’s inferred cost under model m, cmjt.
Thus, if for some values of observables, [P−1

mt P0t]j,` is nonzero in expectation, then for those
observables a change in a shifter of c0`t would imply under model m a change in the mean
of cmjt, violating the restriction that ωmjt is mean-independent of the instruments.13

It’s instructive to note how the conditions of this corollary could fail. [P−1
m P0]? could be

diagonal when the variation in rival costs does not induce variation in the vector of equilib-
rium prices pt, as P0t would be the zero matrix, which is however ruled out by Assumption
5. It could also be diagonal if in all markets, Pmt = P0t, or if Pmt and P0t are always both
diagonal matrices. In this latter case, changes in a rival’s cost only affect that rival’s price
as P0t is diagonal, meaning that the price of product j is not changed by the variation in the
instrument. However, because P−1

mt is also diagonal, only variation in the price of product
j can induce variation in the implied cost of product j. Thus, the difference in the implied
cost of product j under model m and the truth is zero and the model cannot be falsified by
cost side instruments.

13Falsifiability does not require every product’s instruments zjt to include a shifter of every rival product’s
cost, just that there be some pair (j, `), ` 6= j, where [P−1

m P0]?j,` 6= 0 and zjt includes a shifter of c0`.
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Falsifiability with demand side instruments

Two key differences arise between the case of cost side instruments just discussed and the
case of demand side instruments. The first is that, since the product characteristics are
excluded from cost, the researcher can use variation in a product’s own characteristics as
a valid instrument as well as variation in rival product characteristics. Second, product
characteristics in general will directly enter the markup function and therefore have a direct
effect on the implied costs under model m, so that ∂∆mj

∂z
(k)
jt

6= 0.

Under an additional assumption on the model of demand, the effect of product charac-
teristics becomes very similar to the effect of cost shifters on markups:

Assumption 8. (Demand Index) Demand depends on xt and pt only through δt, or st =

s(xt, pt, ·) = s(δt, ·), where δt = xtβ − αpt + ξt, α > 0, and all elements of β are nonzero.

This assumption is satisfied when the demand system is logit or nested logit; it is not
satisfied for mixed logit demand models with random coefficients on either price or charac-
teristics, but we expect the added variation in richer models to make falsification easier, not
harder, as we discuss in Section 4.3. Combined with Assumption 6, Assumption 8 implies
that xt and ct affect equilibrium markups only through the term xtβ − αct, and therefore
that the effects of marginal costs and product characteristics on markups are identical.14

Under this assumption, we can derive a corollary for falsification with product charac-
teristics that is very similar to the one for rival cost shifters.

Corollary 2. Suppose that for every product j, the vector of instruments zjt includes a
product characteristic of every product. Under Assumptions 1-6 and 8, model m is falsified
by the instruments zt if with positive probability over (wt, xt), the matrix [P−1

m P0]? is not
equal to the identity matrix.

The intuition is that the marginal effect of a product characteristic x(k)
`t on the inferred

costs of product j under model m is proportional to (I − P−1
mt P0t)j`. Thus, if this term

is nonzero in expectation for some values of observables, a change in x
(k)
`t would lead to

changes in the mean of cmjt; since product characteristics used as instruments are excluded
from costs, this would again violate the restriction that ωmjt is mean-independent of the
instruments.

Loosely, while falsifying a model with cost side instruments requires that P−1
mt P0t is not

diagonal on average, falsifying a model with demand side instruments only requires that
14If demand depends on xjt and pjt only through δjt, then under the Bertrand model, we can

think of a single-product firm directly choosing markup ∆jt to maximize (pjt − cjt)sj(δjt, δ−jt) =
∆jtsj

(
xjtβ − αcjt + ξjt − α∆jt, δ−jt

)
, and therefore optimal ∆jt depends on market primitives only through

the term xjtβ − αcjt + ξjt; this easily extends to all the models discussed in Appendix C.
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PmtP
−1
0t 6= I. Thus, when α, β, and τ are all non-zero, it is easier to falsify model m using

product characteristics: under Assumptions 1-8 any model which is falsified by rival cost
shifters is also falsified by product characteristics.

4 Falsifiability of Various Models of Conduct

Here we explore the implications of Proposition 1 by examining a range of models of conduct
considered by applied researchers in IO. We start with several examples where models can
be falsified with either cost or demand side instruments. The key feature of these examples
is that the degree of pass-through of rivals’ costs differs across the two models. Reassuringly,
this set comprises many of the most commonly considered models in the literature. However,
not all models can be falsified with these instruments; we show some meaningful economic
examples where falsification with one or both sources of variation breaks down, which gives
helpful intuition for what is actually driving falsifiability.

For both tractability and ease of exposition, as in Section 2, we focus on the case of two
single-product firms facing simple logit demand in each market t. We discuss at the end
of the section how results extend to more general settings. Recall that for each model m,
prices, implied markups and implied costs in market t are characterized by the first-order
conditions in Equation (1), and the pass-through matrix can be obtained via Equation (2).

4.1 Models Falsifiable by either Type Of Instrument

Corollaries 1 and 2 show that a modelm can be falsified against the truth by either cost side or
demand side instruments if for some realizations of observables (wt, zt), the matrix [P−1

m P0]?

is not a diagonal matrix. Here, we show that many of the standard models considered in IO
satisfy this condition.

Example: price versus quantity competition

Result 1. If the true model is competition in prices, then competition in quantities can be
falsified with either type of instrument, and vice versa.

These two models were discussed in Section 2. In the Bertrand-Nash model of price
competition, firms set prices pjt to maximize profits. In the case of two single-product firms
and logit demand, this leads to markups, inverse pass-through, and pass-through matrices

∆Bt =

 1
α(1−s1t)

1
α(1−s2t)

 , P−1
Bt =

 1
1−s1t

− s1ts2t
(1−s1t)

2

− s1ts2t
(1−s2t)

2
1

1−s2t

 , and PBt = κBt

 1
1−s2t

s1ts2t
(1−s1t)

2

s1ts2t
(1−s2t)

2
1

1−s1t


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where s0t = 1 − s1t − s2t and κBt = s−1
0t (1 − s1t)

2(1 − s2t)
2. In the Cournot model, on the

other hand, firms choose quantities, taking the other firm’s quantity as given, to maximize
profits, leading to markups, inverse pass-through, and pass-through

∆Ct =

[
1−s2t
αs0t

1−s1t
αs0t

]
, P−1

Ct =

[
1−s2t
s0t

0

0 1−s1t
s0t

]
, and PCt =

[
s0t

1−s2t
0

0 s0t
1−s1t

]

Thus, the off-diagonal terms of P−1
Bt PCt are always negative, so they can’t be zero in expec-

tation. Likewise, the off-diagonal terms of P−1
Ct PBt are always positive. This gives the result.

The intuition is as in the first example of Section 2. When the true model is Bertrand,
an increase in firm 2’s marginal cost increases both firms’ equilibrium prices. Since Cournot
predicts no pass-through of rival costs, the Cournot model interprets these changes as in-
creases in both firms’ costs, falsifying the restriction. When the true model is Cournot, an
increase in c02t leads to an increase only in firm 2’s price; since the Bertrand model predicts
positive rival cost pass-through, it interprets this change as an increase in firm 2’s cost and an
offsetting decrease in firm 1’s, violating the falsifiable restriction that cm1t has not changed.

Example: competition versus joint profit maximization

Result 2. If the two firms are colluding perfectly to jointly maximize profits, the Bertrand
model and Cournot model can both be falsified with either type of instrument. Similarly, if
the true model is either price or quantity competition, perfect collusion can be falsified with
either type of instrument.

Consider the model where the two firms collude perfectly, jointly setting both products’
prices to maximize combined profits. The problem

max
p1t,p2t

{(p1t − c1t)s1t(·) + (p2t − c2t)s2t(·)}

leads to a Joint Profit Maximization markup function, inverse pass-through matrix, and
pass-through matrix

∆Jt =

[
1

αs0t
1

αs0t

]
, P−1

Jt =
1

s0t

[
1− s2t s2t

s1t 1− s1t

]
, and PJt =

[
1− s1t −s2t

−s1t 1− s2t

]

Above, we saw that the Bertrand pass-through matrix PBt has all positive elements, and
its inverse, P−1

Bt , has positive diagonal elements and negative off-diagonals. From this, we
can easily see that P−1

Jt PBt has all positive elements, so its off-diagonals can’t be zero in

17



expectation; and that P−1
Bt PJt always has negative off-diagonal elements, which therefore

again can’t be zero in expectation. Similarly, since the Cournot pass-through matrix PCt

is diagonal, P−1
Jt PCt will always have positive off-diagonal elements, and P−1

Ct PJt will always
have negative off-diagonal elements, so neither matrix can be diagonal in expectation.

Here, it is clear why we can falsify any of these models. Bertrand competition predicts
positive rival cost pass-through, Cournot predicts zero rival cost pass-through, and perfect
collusion predicts negative rival cost pass-through, so it’s hardly surprising that a shock to
rival costs distinguishes any two of these models. The next example shows that a model can
be falsifiable even when its pass-through prediction is much closer to that of the true model.

Example: weighted Cournot competition

IO economists often use profit weights to model collusion or common ownership (e.g., Backus
et al., 2021). Consider a model where firms compete in quantities, but instead of maximizing
its own profit, each firm maximizes a weighted sum of its own and the other firm’s profits.
Specifically, each firm j chooses quantity sjt to solve

max
sjt

{
sjt(pjt(·)− cjt) + θjs−jt(p−jt(·)− c−jt)

}
where −j refers to the identity of the rival firm. This nests standard Cournot competition
(when θ1 = θ2 = 0) and perfect collusion/joint profit maximization (when θ1 = θ2 = 1),
along with intermediate cases that might be interpreted as “imperfect collusion.”

Result 3. If the true model is Cournot competition with profit weights, then a weighted
Cournot model with misspecified profit weights can be falsified with either type of instruments.

Simplifying the first-order conditions, we can work out the markups, inverse pass-through
matrix, and pass-through matrix

∆WCt =

[
1−(1−θ1)s2t

αs0t
1−(1−θ2)s1t

αs0t

]
, P−1

WCt =
1

s0t

[
1− s2t θ1s2t

θ2s1t 1− s1t

]
, PWCt =

s0t

κWCt

[
1− s1t −θ1s2t

−θ2s1t 1− s2t

]

where κWCt = (1− s1t)(1− s2t)− θ1θ2s1ts2t. (As expected, the markups coincide with ∆Ct

when θ1 = θ2 = 0, and with ∆Jt when θ1 = θ2 = 1.)
Suppose the true model is weighted Cournot competition with weights θ0 = (θ01, θ02), and

we are interested in falsifying a model of weighted Cournot with misspecified weights θm =
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(θm1, θm2) 6= θ0. Focusing on the off-diagonal terms and dropping constants, we can calculate

P−1
WCmtPWC0t ∝

[
? (θm1 − θ01)s2t(1− s2t)

(θm2 − θ02)s1t(1− s1t) ?

]

Thus, if θm1 > θ01, the top-right off-diagonal is always positive, and therefore positive in
expectation; if θm1 < θ01, it’s always negative, hence negative in expectation. Likewise, if
θm2 > θ02, the bottom-right term is always positive, and if θm2 < θ02 always negative. This
gives the result.

If both the true model and the model to be falsified predict negative pass-through of rival’s
costs, how are we able to falsify the wrong model? If we let Pmtij denote the pass-through
of firm j’s costs to firm i’s equilibrium price in market t under model m, so that

P−1
mt P0t =

[
Pmt11 Pmt12

Pmt21 Pmt22

]−1 [
P0t11 P0t12

P0t21 P0t22

]

we can do some matrix algebra and calculate the off-diagonal terms of P−1
mt P0t as

P−1
mt P0t =

 ? k1t

(
P0t12

P0t22
− Pmt12

Pmt22

)
k2t

(
P0t21

P0t11
− Pmt21

Pmt11

)
?


where kit = 1

Pmt11Pmt22−Pmt21Pmt12

PmtiiP0tii

Pmt11P0t11Pmt22P0t22
. A model being falsifiable by rival cost

shifters thus depends on whether it makes a different prediction than the true model about
the pass-through of firm j’s marginal costs to firm i’s equilibrium price, relative to the pass-
through to firm j’s own equilibrium price. As long as this ratio is different between the two
models, falsification is possible with cost side instruments.15

Example: linear versus two-part fees for vertical supply

Next, we depart from our duopoly setting, and instead consider a monopolist in a vertical
relationship. Specifically, there is a single product, produced by an upstream monopolist
with marginal cost cUt and sold by a downstream monopolist with marginal cost cDt in
addition to the wholesale price pUt. Demand is single-product logit – the product’s market
share is

sUt = sDt ≡ st =
exp(xtβ − αpDt + ξt)

1 + exp(xtβ − αpDt + ξt)

15With more than 2 products, P−1
mt P0t not being diagonal is the same as P0t not being a diagonal matrix

times Pmt; thus, falsifiability requires each row of Pmt to not be a scalar multiple of the same row of P0t.
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reflecting competition with an outside good. We focus on cost shocks, looking to falsify a
model based on the pass-through of cUt to the retail price pDt and of cDt to the wholesale
price pUt.

Suppose we can observe the per-unit wholesale price, but cannot observe lump-sum trans-
fers between the two firms and don’t know whether they are feasible. In either case, we
assume the upstream firm moves first, setting the wholesale price, and the downstream firm
moves second. We want to know whether we can falsify a model in which lump-sum transfers
are feasible against a model where they are not, and vice versa.

Result 4. In the vertical monopoly setting, if the truth is linear wholesale pricing, two-part
tariffs can be falsified with cost side instruments, and vice versa.

If lump-sum transfers are feasible, the upstream firm will set pUt equal to its marginal
cost cUt, to avoid distortions away from the monopoly price in the downstream market, and
will extract all profits by demanding a lump-sum payment equal to downstream monopoly
profits. Given wholesale price pUt and downstream marginal cost cDt, the retailer will then
set pDt to maximize downstream profits, solving

max
pDt

(pDt − cDt − pUt)st −→ pDt − cDt = pUt +
1

α(1− st)

Instead of writing everything in terms of markups, it’s helpful here to think of how we
recover marginal costs from observables. Letting the 2P subscript indicate the two-part
tariff model, we can calculate implied marginal costs with lump-sum payments, the inverse
pass-through matrix, and the pass-through matrix as[

c2PUt

c2PDt

]
=

[
pUt

pDt − pUt − 1
α(1−st)

]
, P−1

2Pt =

[
1 0

−1 1
1−st

]
, P2Pt =

[
1 0

1− st 1− st

]

(Note that since the downstream price pDt maximizes joint profits, it responds identically to
an increase in either the upstream or the downstream marginal cost; and since the wholesale
price pUt is simply cUt, it does not respond to a change in the downstream marginal cost.)

What if lump-sum payments are not allowed? The upstream firm will set wholesale price
pUt > cUt, after which the downstream firm solves

max
pDt

(pDt − cDt − pUt)st(pDt) −→ pDt − cDt − pUt =
1

α(1− st)
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The upstream firm sets the wholesale price to solve

max
pUt

(pUt − cUt)st(pDt(pUt))

with first-order condition

st + (pUt − cUt)
∂st
∂pDt

dpDt
dpUt

= 0

We can recover dpDt

dpUt
from the downstream firm’s first-order condition and the Implicit Func-

tion Theorem, getting dpDt

dpUt
= 1 − st. Letting the L subscript indicate the linear pricing

model, we can calculate imputed marginal costs, the inverse pass-through matrix, and the
pass-through matrix as[
cUt

cDt

]
=

 pUt − 1

α(1−st)
2

pDt − pUt − 1
α(1−st)

 , P−1
Lt =

 1 2st
(1−st)

2

−1 1
1−st

 , PLt =
(1− st)2

1 + st

 1
1−st

− 2st
(1−st)

2

1 1


We can then calculate

P−1
2PtPLt =

[
1−st
1+st

− 2st
1+st

0 1

]
Note the top-right off-diagonal is always negative, so nonzero in expectation: if we observe
the wholesale price and have access to an instrument for downstream marginal cost, we
can falsify two-part tariffs. In fact, this is obvious: if two-part tariffs were available, the
wholesale price should be equal to the upstream marginal cost, and therefore not affected
by downstream marginal cost. With linear pricing, however, there is nonzero pass-through
of downstream cost to wholesale price. So if the truth is linear pricing, we would observe
the wholesale price responding to the retailer’s cost shifter, falsifying the two-part tariff
model. Similarly, P−1

Lt P2Pt has a positive top-right off-diagonal term, so if the true model
was two-part tariffs, we can likewise falsify linear wholesale pricing.

However, note that while the top-right term of P−1
2PtPLt is always negative, the bottom-

left term is zero. Once the wholesale price pUt has been set, the downstream firm reacts to
it in the same way in both models, playing the static best-response to it; the two models
differ only in how pUt is determined. The two models still have different values of [Pm]21

– the absolute pass-through of the upstream firm’s costs to the retail price – because an
increase in cUt affects the wholesale price differently under the two models. But because the
downstream firm’s objective function is the same in both models, the equilibrium response of
the retail price relative to the response of the wholesale price is the same in the two models
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when upstream cost changes (Pmt21

Pmt11
= P0t21

P0t11
in the notation of the previous example). This

means that even under the wrong model, a change in upstream costs does not lead to a
change in inferred downstream costs. (The same effect occurs for the second-mover firm if
we want to falsify sequential competition a la Stackelberg when the truth is simultaneous
competition (or vice versa); we explore this example in Appendix D.) This illustrates the
need in Corollary 1 for shifters of all products’ costs to be available. In the vertical monopoly
example, if we could only vary the upstream producer’s marginal cost and observe the effect
this had on the retail price, we could not distinguish between the two models.16

4.2 Various Reasons Falsifiability Can Fail

The observation that upstream cost shifters alone can’t falsify the two-part tariff model
under true linear pricing (or vice versa) motivates us to return to the two-product duopoly
setting and examine models where falsifiability by one or both types of instruments fails.

Rival costs don’t work when P−1
m P0 is diagonal

Corollary 1 established that falsification by rival cost shifters requires the conditional ex-
pected value of P−1

mt P0t to not be diagonal. In Section 2, we explored one example where
P−1
mt P0t was diagonal:

Result 5. If the true model is competition in quantities, perfect competition can only be
falsified by demand side instruments.

Since markups are zero under perfect competition, PPCt = I, so for any true model,
P−1
PCtP0t = P0t. Under Cournot competition, pass-through PCt is diagonal, but with diagonal

terms less than 1 (and therefore not 1 in expectation). Cournot competition, like perfect
competition, predicts no pass-through of rival costs, so rival cost shifters cannot distinguish
between the two models. On the other hand, Cournot competition predicts that a change in
a firm’s own product characteristics will change price, while perfect competition does not,
allowing own product characteristics excluded from price to falsify the wrong model.

Corollaries 1 and 2 don’t hold when Assumption 6 is violated

Next, consider a class of models where the markups take the form

∆mj = ∆j(st, pt) + (1− λmj)c0jt,

16If we do not observe wholesale prices, we could form restrictions based on cUt + cDt as in Villas-Boas
(2007). To falsify either vertical model with cost side instruments we would need more than one product in
the market; variation in a rival’s upstream or downstream cost would then falsify the wrong model.
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where ∆j(st, pt) is a function that is not model-specific. Note that this violates Assumption
6, since costs enter markups directly. Markups of this form arise in the model of collusion
considered in Harrington (2022), where firms collude via cost coordination. These markups
also arise in settings where two firms compete a la Bertrand in prices, but each one maximizes
a weighted sum of profits and revenues, choosing price pjt to solve

max
pjt

{
λj(pjt − cjt)sjt(·) + (1− λj)pjtsjt(·)

}
= max

pjt

{
(pjt − λjcjt)sjt(·)

}
This could occur, for example, if at least one of the firms hoped to be acquired, and the
acquirer’s valuation was likely to be based on revenue growth rather than profitability; this
could also be a reduced-form for a firm maximizing profits subject to a revenue constraint,
or maximizing revenues subject to a profit constraint, with the weights coming from the
Lagrange multiplier in the maximization problem (Baumol, 1958). For simplicity, we put no
market subscript on each firm’s weight λi on profits, but one could be easily incorporated.

Result 6. Suppose the true model is price competition with λ0 = (λ01, λ02). The same model
with misspecified weights λm 6= λ0 cannot be falsified with cost side or with demand side
instruments.

Firm j’s problem in this class of models is exactly the same as that of a firm maximizing
profits, but with marginal costs equal to λjcjt instead of cjt. Given that, it’s unsurprising
that the pass-through and inverse pass-through matrices are

Pmt = PBt

[
λm1 0

0 λm2

]
and P−1

mt =

[
1

λm1
0

0 1
λm2

]
P−1
Bt

where PBt is the pass-through matrix for ordinary profit-maximizing price competition. If
the true model has weights λ0 = (λ01, λ02) on profits relative to revenues, and an alternative
model uses weights λm = (λm1, λm2), then

P−1
mt P0t =

[
λ01
λm1

0

0 λ02
λm2

]

This matrix is diagonal, so we do not expect cost side instruments to work. (Like in the
vertical example, the misspecified model is wrong about how a shock to one firm’s cost affects
that firm’s equilibrium price, but right about how the other firm responds to a change in
rival’s price, so rival’s cost shocks cannot falsify the wrong model.)

Why demand side instruments don’t work is more subtle, since P−1
mt P0t 6= I when λm 6= λ0.

However, notice we can derive the total effect of the instrument z(k)
jt on the markups implied
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by any model m as d∆mjt

dz(k)jt

=
d∆jt

dz(k)jt

, which is the same for all models in this class, including

the true model. As the only part of markups that is model-specific is a rescaling of c0jt, and
since product characteristics are excluded from cost, they cannot falsify any model m.

Product characteristics don’t work if they don’t move markups

Consider a class of models of “cost-plus pricing,” where each firm sets its markup as a fixed
fraction of marginal costs, pjt − cjt = φjcjt. (Once again, this violates Assumption 6.) This
leads to the pass-through matrix

Pmt =

[
1 + φm1 0

0 1 + φm2

]

Suppose the true model is characterized by markup ratios φ0 = (φ01, φ02), and consider the
problem of falsifying a misspecified model with markup ratios φm = (φm1, φm2) 6= φ0. Once
again, neither type of instrument will work:

Result 7. If the true model is cost-plus pricing, a model with misspecified markup ratios
cannot be falsified with either cost or demand side instruments.

The first part should be clear: all models in this class predict zero pass-through of rival’s
costs, so cost side instruments shouldn’t have any effect. Demand side instruments don’t
work in this class of models because a firm’s markup only depends on its own cost, not on the
characteristics of its product that are independent of cost. Thus, despite the fact that the
matrix condition holds, demand side instruments which are excluded from cost cannot falsify
model m, as these do not shift markups for any of the models in this class. In the language of
Proposition 1, P−1

mt − P−1
0t is nonzero, but ∂p0

∂z
(k)
jt

is zero because product characteristics don’t

shift equilibrium prices.

Instruments can only work if they shift prices

Consider a model where firm 2’s pricing is determined nationally by the marketing depart-
ment, which decides at the corporate level that a certain length of sandwich should cost $5,
or certain menu items should be 99 cents, with no relation to local cost or product character-
istics. Like DellaVigna and Gentzkow (2019), we refer to such a pricing strategy as uniform
pricing. Suppose that in the true model, firm 1 sets price p1t separately in each market to
maximize profits, while firm 2 uses uniform pricing; and suppose we wish to falsify a model
where both firms use uniform pricing.
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Result 8. If in the true model, firm 1 maximizes profits in each market and firm 2 uses
uniform pricing, a model where both firms use uniform pricing can be falsified by demand
side instruments but not by cost side instruments.

We can calculate the pass-through matrix for the Local-Uniform model where firm 1
prices locally17 (indexed LU) and the Uniform-Uniform model18 (indexed UU) as

PLUt =

[
1− s1t 0

0 0

]
and PUUt =

[
0 0

0 0

]

With these two models, it is meaningless to consider conditions on P−1
mt P0t, since neither

pass-through matrix is invertible. That said, it should be clear that neither model can be
falsified using cost instruments if the other is the correct model, since both predict the same
response (none) to any rival cost shock.

With product characteristic instruments, if the true model is LU , we should be able to
falsify the UU model. Market-to-market differences in product 1’s characteristics will lead
to variation in observed price p1t across markets, which would falsify the UU model.

Instruments don’t work if nothing moves markups

Another simple class of models is one where firms set constant markups

pjt = cjt + λmj

In this setting, a misspecified model (λm 6= λ0) cannot be falsified by either instrument.

Result 9. If the true model is constant markups, a model of constant markups at a misspec-
ified level cannot be falsified by cost or demand side instruments.

Pass-through matrices are Pmt = I for any model in this class. Moreover, markups are
not a function of either cost or demand side instruments, so there can be no direct effect of
any of these instruments. This again underscores the fact that falsifiability using instruments
is about pass-through and not about the level of markups.

17Firm 2’s costs don’t affect p2t and therefore don’t affect p1t either, and firm 1’s costs don’t affect p2t.
The only nonzero element of P0t is therefore the upper left element, dp1t

dc1t
, which we can calculate directly

from firm 1’s first-order condition using the Implicit Function Theorem.
18If both firms use uniform pricing, pass-through of local cost shocks is zero.
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4.3 Beyond Two-Firm Simple Logit

Partly for expositional reasons but partly to give sharp results, the examples above focused
on the case of two single-product firms facing simple logit demand. It’s natural to ask how
our results extend to more general settings.

In the examples above, falsifiability was either guaranteed or impossible. More generally,
however, we distinguish between three cases, which we discuss for cost side instruments:

• Case I: Falsifiability is guaranteed. There are observables (wt, zt) for which the matrix
[P−1
m P0]? cannot be diagonal – for example, because certain off-diagonal elements of

P−1
mt P0t are always strictly positive (or always strictly negative) and therefore cannot

have zero expected value.

• Case II: Falsifiability is in some sense generic. There are observables (wt, zt) for which
[P−1
m P0]? could in principle be diagonal, but won’t typically be – for example, because

some off-diagonal element of P−1
mt P0t varies continuously and could take either sign, so

its expectation being exactly zero requires a non-generic distribution of unobservables.

• Case III: Falsifiability is impossible. The matrix P−1
mt P0t is always diagonal, so [P−1

m P0]?

is always diagonal.

The examples above focused on cases I and III, where a model either is always or is never
falsifiable; in more complex settings, however, we expect case II to be the most common.

For an example of this, in a two-firm simple logit setting we consider a model of profit
weights, but now with competition in prices rather than quantities. For simplicity, we’ll
suppose the two firms’ profit weights are the same, so each firm j chooses price pjt to solve

max
pjt

{
(pjt − cjt)sjt(pt) + θ(p−jt − c−jt)s−jt(pt)

}
Under logit demand, the two firms’ first-order conditions give the markup function

∆WBt =


1−(1−θ)s2t

αs0t+α(1−θ2)s1ts2t

1−(1−θ)s1t
αs0t+α(1−θ2)s1ts2t


with WB standing for the Weighted Bertrand model.

Falsifying a model where the weight on rival’s profits is misspecified, θm 6= θ0, is an
instance of case II. For a given true value of θ0 and a given misspecified model θm 6= θ0,
the off-diagonal terms of the matrix P−1

m P0 can be either positive or negative, but are not
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Figure 1: CDF of [P−1
mt P0t]12 for Betrand Profit Weight Models

This figure plots distributions of [P−1
mt P0t]12 over realizations of (s1t, s2t) for three different values of (θ0, θm).

typically zero; and the diagonal terms can be greater than or less than 1, but are not typically
equal to either 1 or to each other. We compute the top-right off-diagonal term, [P−1

m P0]12, for
a large sample of uniform draws of (s1t, s2t), and display the resulting distribution in Figure 1
for three representative pairs of true and misspecified models (θ0, θm). While the distributions
all have support that includes 0, the distributions are continuous, so getting a conditional
expectation E([P−1

mt P0t]12) = 0 would only hold for a non-generic set of observables.
We can also examine the value of the off-diagonal term at each point in the simplex of

realizations of market shares (s1t, s2t). In each panel of Figure 2, we do so for three pairs
of θ0 and θm such that θm − θ0 = 0.1. For each realization on the simplex, we indicate the
value of [P−1

m P0]12 with color gradients – darker orange indicates negative values that are
larger in magnitude and darker purple indicates positive values that are larger in magnitude.
The points where [P−1

m P0]12 = 0 are indicated in black. Immediately, one sees that for
the vast majority of realizations of shares, [P−1

m P0]12 > 0. In fact, [P−1
m P0]12 is always

positive whenever the market share of both products is below 0.6. For an empirically relevant
example, take the setting in Miller and Weinberg (2017). There, the outside option is defined
in such a way that the market share of any product is less than 0.5 in all markets. In that
case, the average of [P−1

m P0]12 is positive in all three panels, and falsification of the wrong
profit weight is possible with cost or demand side instruments.
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Figure 2: Values of [P−1
mt P0t]12 for Realizations of Market Shares in Bertrand Profit Weight Models

This figure plots magnitudes of [P−1
mt P0t]12 over the simplex of (s1t, s2t) for three different values of (θ0, θm).

Darker purple (orange) shading indicates more positive (negative) values. Black indicates a zero value.

As we move away from logit demand, we expect the vast majority of cases to fall into case
II – models that are typically falsifiable even if they can’t be proven to always be. We offer one
more example to support this intuition. Under Proposition 1, putting aside the direct effect,
falsifiability depends on two conditions: the inverse pass-through matrices P−1

mt and P−1
0t

being different, and their difference not being orthogonal to the effect of the instruments on
equilibrium outcomes. Under Assumption 8, this comes down to P−1

mt P0t 6= I in expectation.
Still in the realm of two single-product firms but now with a general demand system we can
show that it would be “difficult” for the Bertrand and Cournot models to satisfy P−1

mt P0t = I

in a particular market, and impossible under many commonly-used demand systems:

Result 10. For a model with two single-product firms and general demand system st = s(pt),
if P−1

Bt PCt = I, then
d
dpt

(
∂ log s1t

∂p1t

/
∂ log s2t

∂p2t

)
must be equal to 0 at market t equilibrium prices pt.

In many well-known demand systems, ∂ log s1t
∂p1t

and ∂ log s2t
∂p2t

move in opposite directions
in response to price changes, making this condition impossible to satisfy. Quint (2014)
catalogs several commonly-used demand systems under which demand is log-concave and log-
supermodular. In that case, −d log s1t

dp1t
would be positive and increasing in p1t, while −d log s2t

dp2t
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would be positive and decreasing in p1t, so
∂ log s1t
∂p1t

/
∂ log s2t
∂p2t

would be increasing in p1 (and by
the same token decreasing in p2). Quint (2014) also mentions numerical simulations showing
that some other demand systems will yield the opposite – log-convex and log-submodular
demand – in which case −d log s1t

dp1t
would be decreasing in p1t and −d log s2t

dp2t
increasing. While

there are certainly likely to be demand systems for which neither of these two cases hold,
this example does seem to imply that P−1

Bt PCt = I would be a difficult result to achieve in
a single market t; if it were to hold in expectation, then, this would be a knife-edge result
based on the distribution of primitives across markets.19

5 Extension to Non-constant Marginal Cost

Everything up to now has assumed that a firm’s marginal costs c0jt are constant – or rather,
vary only with cost shifters wjt. Next, we consider what happens when cost may depend on
quantity. As before, we begin with an extended example to build intuition, then formalize
the results in a general setting.

5.1 Illustrative Example

We return to the environment from Sections 2 and 4 – two single-product firms facing simple
logit demand in the absence of unobserved shocks – but this time with marginal costs which
are linearly increasing in the quantity produced, c0jt = γqjt + wjtτ .

Suppose that the true model generating the data is perfect competition, and we wish
to falsify the Cournot model. Recall from Section 4.1 that Cournot markups are ∆Cjt =

1−s−jt

α(1−s1t−s2t)
, while markups under the true model are zero. This means that the true model

with costs c0jt = γqjt +wjtτ is observationally equivalent to the Cournot model with costs20

cmt =

 γq1t + w1tτ − 1−s2t
α(1−s1t−s2t)

γq2t + w2tτ − 1−s1t
α(1−s1t−s2t)

 . (5)

This suggests a more general observation: models are only falsifiable once we restrict
the marginal cost function. In the previous sections, we imposed in Assumption 3 that cmjt
could only depend on wjt, not qjt. In this section, we instead maintain that c0jt and cmjt can
depend in an unrestricted way on qjt and wjt, but not on anything else, as in Assumption 2.

19Note also that this condition is not sufficient for P−1
Bt PCt = I, only necessary; another condition must

hold as well, and with J products, it would be J separate conditions that must hold.
20That is, a given set of primitives (xt,wt) would yield the same observable outcomes (pt, st) under perfect

competition with marginal costs c0jt and under Cournot competition with costs given by Equation (5).

29



Given that assumption, the marginal cost function in Equation (5), which could “Cournot-
rationalize” any data generated by the true model, is not admissible. Thus, with the right
variation, we can hope to detect that the marginal costs implied by the Cournot model must
depend on the other firm’s quantity, and thus falsify the Cournot model.21

One instrument: rival cost shifter

To see how this works, we begin by considering the effect of a cost side instrument, zjt = w(1)
−jt.

Under the true model of perfect competition, equilibrium prices can be thought of as the
solutions to the equation

F (·) ≡

[
p1t − c01t

p2t − c02t

]
=

[
p1t − w1tτ − γs1t

p2t − w2tτ − γs2t

]
=

[
0

0

]
(6)

and we can calculate the marginal effect of a change in a cost shifter w(1)
t on observable prices

under the true model via the implicit function theorem,

dpt
dw(1)

t

= −
[
dF
dpt

]−1
[

dF

dw(1)
t

]
=

τ (1)

D

[
1 + γαs2t(1− s2t) γαs1ts2t

γαs1ts2t 1 + γαs1t(1− s1t)

]

where D = (1 + γαs1t(1− s1t))(1 + γαs2t(1− s2t))− γ2α2s2
1ts

2
2t. Note that even with perfect

competition, there’s positive pass-through of rival’s costs: when firm 2’s costs go up and it
raises its price, firm 1’s market share increases, increasing 1’s marginal cost and therefore
firm 1’s price.

Having calculated the (true) effect of cost shifters on realized prices, we can calculate the
effect of w(1)

2t on firm 1’s marginal costs inferred under the Cournot model, cm1t, as

d

dw(1)
2t

(
p1t −

1− s2t

α(1− s1t − s2t)

)
=

τ (1)

D

[
γαs1ts2t(1− s2t)

1− s1t − s2t

]
.

21Interestingly, if we were seeking to falsify the Bertrand model, under logit demand with single-product
firms, markups ∆Bjt = 1

α(1−sjt)
are solely a function of own market share, so the misspecified cost function

implied by Bertrand competition, cBjt = γqjt + wjtτ − 1
α(1−sjt)

, does not violate the exclusion restriction
and the model cannot be falsified by any instruments. However, we see this as very much a knife-edge case:
with multi-product firms, even simple logit markups would depend on the market shares of the same firm’s
other products.
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We can also calculate the true effect w(1)
2t will have on firm 1’s observed market share,

ds1t

dw(1)
2t

=
∂s1t

∂p1t

dp1t

dw(1)
2t

+
∂s1t

∂p2t

dp2t

dw(1)
2t

=
τ (1)

D
αs1ts2t .

By assumption, w2t does not enter c1t directly; so to not falsify the model, the change in
cm1t needs to be fully attributable to the change in firm 1’s market share,

∂cm1t

∂s1t

ds1t

dw(1)
2t

=
d

dw(1)
2t

(
p1t −

1− s2t

α(1− s1t − s2t)

)
Given our calculations above, this requires

∂cm1t

∂s1t

= γ

(
1 +

s1t

1− s1t − s2t

)
(7)

So, if data is generated under perfect competition (with linear marginal costs), fitting the
Cournot model to the data would require a marginal cost function cmt satisfying Equation (7).

In terms of falsifying the wrong model, this is at least partially good news, in the sense
that cm1t depends on s2t, violating the exclusion restriction. However, variation in w(1)

2t

alone may not be enough to detect it: if w(1)
2t alone were changing, the data would trace a

one-dimensional curve through (s1t, s2t)-space, and we would not be able to tell that cm1t

depended directly on s2t and not just on s1t.
22

Second instrument: own product characteristic

Next, we consider an additional instrument – this time, a characteristic of product 1, x(1)
1t ,

which enters demand through the mean utility of product 1, δ1t = x1tβ−αp1t. While x(1)
jt does

not enter costs directly, it still changes prices under the true model of perfect competition
– by changing equilibrium market shares and therefore marginal costs. The effect of x(1)

1t on
market shares is ∂s1t

∂x
(1)
1t

= β(1)s1t(1 − s1t) and ∂s2t

∂x
(1)
1t

= −β(1)s1ts2t; we can calculate the true

22More formally, if w(1)
2t were the only thing varying across markets, then observed market shares would

be deterministic functions of w(1)
2t , sjt = s̄j(w

(1)
2t ), and we could not rule out the Cournot model with the

cost function

cmt =

 γq1t + w1tτ −
1−s̄2(s̄

−1
1 (s1t))

α(1−s1t−s̄2(s̄
−1
1 (s1t)))

γq2t + w2tτ −
1−s̄1(s̄

−1
2 (s2t))

α(1−s̄1(s̄
−1
2 (s2t))−s2t)


which does not violate the exclusion restriction.
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effect of x(1)
jt on observed prices from Equation (6) using the implicit function theorem,

dpt
dx(1)

t

= −
[
dF
dpt

]−1
[

dF

dx(1)
t

]
=

γβ(1)

D

[
s1t(1− s1t) + γαs1ts2ts0t −s1ts2t

−s1ts2t s2t(1− s2t) + γαs1ts2ts0t

]

where again D = (1 + γαs1t(1− s1t))(1 + γαs2t(1− s2t))− γ2α2s2
1ts

2
2t. (For intuition, recall

that the true model is perfect competition with increasing marginal costs. When a change
in x1t increases δ1t, product 1 gains market share and product 2 loses market share; product
1’s cost goes up, product 2’s cost goes down, so 1’s price goes up and 2’s goes down.)

Because x(1)
1t does not enter firm 1’s marginal costs directly, to explain the data using the

Cournot model, we would need the change in implied costs to be attributed to the observed
change in market share,

∂cm1t

∂s1t

ds1t

dx(1)
1t

=
d

dx(1)
1t

(
p1t −

1− s2t

α(1− s1t − s2t)

)

Note that x(1)
1t affects s1t both directly and through the change in prices. We can calculate

d

dx(1)
1t

(
p1t −

1− s2t

αs0t

)
=

γβ(1)

D
(s1t(1− s1t) + γαs1ts2ts0t)−

γβ(1)

D

s1t

s0t

(
1

γα
+ s2t(1− s2t)

)
and

ds1t

dx(1)
1t

=
γαβ(1)

D
s1t(1− s1t)

1

αγ
+
γαβ(1)

D
s1ts2ts0t

This means that to account for the change in inferred costs under the Cournot model, we
would need

∂cm1t

∂s1t

= γ

(
1− s1t

s0t

1
γα

+ s2t(1− s2t)

s1t(1− s1t) + γαs1ts2ts0t

)
(8)

Equations (7) and (8) should make it apparent that variation in a rival cost shifter and
an own product characteristic instrument together suffice to falsify the Cournot model when
the true model generating the data is perfect competition. From Equation (7), to rationalize
changes in market outcomes when w(1)

2t changes requires ∂cm1t

∂s1t
> γ; and from Equation (8),

to rationalize changes in market outcomes when x
(1)
1t changes requires ∂cm1t

∂s1t
< γ. Since no

cost function can satisfy both, the model is falsified.
There is useful economic intuition for why ∂cm1t

∂s1t
appears to be greater than γ (its true

value) when w(1)
2t changes but less than γ when x(1)

1t changes. In the former case, under the
true model of perfect competition with increasing marginal costs, when w(1)

2t goes up, firm 2
responds to the increase in costs by raising its price, reducing s2t. Under the Cournot model,
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the decrease in s2t reduces firm 1’s markup function; so the Cournot model must attribute
more than 100% of the increase in p1t to an increase in marginal costs, since it predicts
that firm 1’s markup has shrunk. On the other hand, when x(1)

1t increases (assuming β(1) is
positive), this results in increases in both s1t and firm 1’s markup under Cournot; so the
Cournot model attributes part of the increase in p1t to an increase in markup and part of it
– less than 100% – to the increase in marginal costs due to increased production.

Next, we extend this intuition about what makes two instruments “different enough” to
falsify a model to the general setting of multi-product firms facing an arbitrary demand
system with unobserved shocks.

5.2 General Conditions for Falsification

Now consider the general demand system with J products, and the separable specification
for the true marginal cost c0jt = c̄0j(qjt,wjt) +ω0jt with c̄0j differentiable. As in Assumption
2, this restricts the true cost function c̄0j in two ways. First, we let a firm’s cost only depend
on its own quantities and cost shifters. As we know the true cost function cannot depend
directly on rivals’ quantities or on the instruments, we can restrict the function c̄mj to have
the same property. Second, we maintain a mean independence restriction of the unobservable
cost shock with respect to the instruments. Under these conditions falsification is possible,
as the example above illustrates.

To explore what is precisely required to falsify a model under these two restrictions on
the cost function c̄mj, we return to Lemma 2, which we can restate as follows:

Lemma 3. Suppose that Assumptions 1, 2, and 4 hold. Then, model m is falsified by the
instruments zjt if and only if for some j there exists no function c̄mj such that for all k

E

[
d∆0jt

dz(k)
jt

−
d∆mjt

dz(k)
jt

| wjt, zjt

]
= E

[(
∂c̄mj(qjt,wjt)

∂qjt
−
∂c̄0j(qjt,wjt)

∂qjt

)
dqjt
dz(k)

jt

| wjt, zjt

]
a.s.

(9)

In the case of constant marginal costs, falsification depends only on whether the left
hand side of Equation (9) is equal to zero: the restriction ∂c̄mj(qjt,wjt)

∂qjt
= 0 removes a degree

of freedom by which unobserved costs can match differences in markups, making falsification
easier. This leads to the straightforward conditions on pass-through matrices in Corollaries
1 and 2. With non-constant marginal costs, these conditions on pass-through are still rel-
evant but no longer suffice on their own. With a single instrument, a cost function c̄mj for
a misspecified model m 6= 0 can typically be constructed to satisfy (9). This is easiest to
see in the case of no unobservables, since we can often construct a cost function c̄mj which
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satisfies (9) as a solution to the differential equation

∂c̄mj(qjt,wjt)

∂qjt
=

∂c̄0j(qjt,wjt)

∂qjt
+

(
d∆0jt

dz(k)
jt

(wjt, z
(k)
jt )−

d∆mjt

dz(k)
jt

(wjt, z
(k)
jt )

)/
dqjt
dz(k)

jt

(wjt, z
(k)
jt )

(10)
This also suggests that with more than one instrument, falsification is likely to be impossible
when the right-hand side of (10) is the same for all instruments. We formalize the added
difficulty of falsifying a model under non-constant marginal cost in the next result:

Corollary 3. Suppose that Assumptions 1, 2, and 4 hold, and that P−1
mt P0t 6= I for all t.

Suppose moreover that for the first instrument k = 1, there exists a cost function c̄
(1)
mj for

each j satisfying Equation (9). A model of conduct m is not falsified by instruments zjt if
for each k > 1, there exists a constant ζk such that for all j and t,

dqjt
dz(k)

jt

= ζk
dqjt
dz(1)

jt

(11)

and (
∂∆0jt

∂z
(k)
jt

−
∂∆mjt

∂z
(k)
jt

)
= ζk

(
∂∆0jt

∂z
(1)
jt

−
∂∆mjt

∂z
(1)
jt

)
. (12)

Corollary 3 makes clear that, for multiple instruments to help, they must have different
economic effects. For multiple instruments to falsify a model where a single instrument
could not, the additional instruments must have differential effects on either quantities or
on markups. In a standard differentiated product environment, it should be easy to select
instruments which violate the conditions of Corollary 3, so falsification should typically
be possible. For example, for many conduct models, markups depend directly on product
characteristics. Thus, using a cost side instrument (which has no direct effect) and a demand
side instrument would violate Equation (12). However, not every set of instruments will work.
Under Assumption 7, falsification would fail if a researcher used two cost shifters from the
same rival firm, as Equations (11) and (12) would both hold. Similarly, under Assumption
8, two characteristics of the same product do not permit falsification.

Corollary 3 is related to findings in Bresnahan (1982) and Lau (1982). They show that
instruments that do not rotate demand do not permit falsification in a class of conduct
parameter models when marginal costs are non-constant. This lack of falsification is not
surprising, as Equations (11) and (12) hold in their context of homogenous products with a
representative firm. Because there are no rivals, instruments are limited to the demand side
and when the index restriction in Lau (1982) is satisfied, Equation (11) follows. Moreover,

34



the markups for a model m can be expressed as ∆mjt = λm
∂sjt

−1

∂qjt
, so that ∆0jt − ∆mjt =

(λ0 − λm)
∂s
−1
jt

∂qjt
. Thus, Equation (12) is violated only if the inverse demand is a non-linear

function of zjt (i.e., the instrument “rotates” demand).

5.3 “Failure Modes” with Non-constant Marginal Costs

The example in Section 5.1 illustrates that with non-constant marginal costs, one instrument
is not enough to falsify the wrong model, but two instruments may be. Section 5.2 showed
that two instruments can still fail to falsify the wrong model, but typically under strong
restrictions on how they differ. We consider examples below to illustrate this point: even
when pass-through matrices are different between modelm and the truth, there are additional
requirements for falsification to be guaranteed. We continue to work with the example
from Section 5.1 – two single-product firms, simple logit demand, and linear marginal costs
c0jt = γqjt + wjtτ .

Obviously redundant instruments

We do not expect to be able to falsify a model when all the instruments we use have identical
effects. As one example, return to the question of falsifying Cournot competition when the
truth is perfect competition, and suppose our two instruments were two different shifters of
the same rival firm’s costs, z(1)

1t = w(1)
2t and z(2)

1t = w(2)
2t . (With non-constant marginal costs,

the matrix P−1
Ct PPCt is no longer diagonal.) Since both instruments affect market outcomes

only by changing c02t, their marginal effects on observed prices and market shares would be
identical, simply rescaled by τ (2)/τ (1). If a cost function would rationalize data under Cournot
in the face of one rival cost shifter, it would still rationalize data in the face of a second shifter
of the same rival’s cost. (In the language of Corollary 3, (12) holds because rival cost shifters
have no direct effect on markup so both sides are zero, and (11) holds with ζ2 = τ (2)/τ (1)

since the marginal effect of w(k)
2t on market shares is simply τ (k) times the effect of c2t.)

Surprisingly redundant instruments

More surprisingly, perhaps, in the example in Section 5.1, a rival cost shifter w(1)
2t together

with a product characteristic x(1)
2t of the same rival would not suffice to falsify the Cournot

model. As discussed earlier, under Assumptions 6 and 8, the effect of a product charac-
teristic xjt on a rival’s markup is proportional to the effect of the same product’s marginal
cost. In this example, which satisfies both assumptions, the two instruments satisfy the two
conditions of Corollary 3 and are therefore redundant.

35



Why these examples don’t worry us

While we can come up with ways to satisfy Corollary 3 and therefore fail to falsify the wrong
model with two instruments, we’re confident that in most differentiated-product environ-
ments, this won’t be a problem. Still looking to falsify Cournot competition when the true
model is perfect competition, consider now the case of four or more single-product firms,
with cost shifters as the instrument of choice. Focus on firms 1 and 2, and use as instru-
ments the cost shifters of the other two firms, z(1)

1t = z
(1)
2t = w(1)

3t and z(2)
1t = z

(2)
2t = w(1)

4t . With
cost shifters, there are no direct effects on markup functions, so Equation (12) will hold;
but we expect Equation (11) to typically be violated in sufficiently complex environments.
Equation (11) (and therefore Corollary 3) would require

dq1t/dw
(1)
4t

dq1t/dw
(1)
3t

=
dq2t/dw

(1)
4t

dq2t/dw
(1)
3t

This might hold in a highly symmetric model such as non-nested logit, where substitution
patterns are highly restricted. However, it should fail in any model general enough to admit
a notion of “closer” and “more distant” substitutes. As an example, suppose products 2 and
4 are close substitutes – such as products within the same nest in a nested logit model –
while no other pair of products is. We would then expect q2t to respond strongly to a change
in w4t (operating through a change in p4t), relative to its response to w3t, while q1t would not
have this “stronger” response to w4t relative to w3t, which would violate this condition. Any
model rich enough for some pairs of products to be “closer substitutes” than others should
lead to violations of equation (11) in this way.

With product characteristics, we’re free to use a firm’s own product characteristic and a
rival’s, and these will typically not satisfy Equation (12). Under simple logit demand, a prod-
uct characteristic of firm j 6= 1 has no direct effect on the markup function of firm 1.23 This
means that in the logit case, ∂∆0jt

∂z
(k)
jt

− ∂∆mjt

∂z
(k)
jt

will be nonzero when instrument k is a characteris-

tic of product j and zero when it’s a characteristic of a rival product, making (12) impossible
to satisfy even with two firms. And even without this logit quirk, as long as a product char-
acteristic’s effect on the difference in markups ∆0jt−∆mjt is different for own-product versus
rival-product characteristics, Equation (12) seems virtually impossible to satisfy.

While Corollary 3 is not an if-and-only-if result – failure of either Equation (11) or (12)
does not guarantee a model is falsifiable – these conditions seem like the most natural way for
falsifiability to fail. Satisfying Lemma 3 without satisfying the two conditions of Corollary

23Under Assumption 8, xjt has similar effects to cjt, and under the Cournot model with simple logit
demand, rival cost pass-through is zero.
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3 roughly requires d
dz(k)jt

(∆0jt −∆mjt)/
dqjt
dz(k)jt

to be the same for all instruments in expectation

without being the same realization-by-realization, which seems like it would require very
“unlucky” distributions of unobservables. Thus, in settings with more than two firms, we
expect rival cost shifters alone to give sufficient variation to typically falsify the wrong model
if pass-throughs are sufficiently different; and even in settings with just two firms, we expect
product characteristics to typically do likewise.

6 Conclusion

We discuss falsification of models of conduct in a general environment where researchers
observe market outcomes for firms selling differentiated products. Our results highlight the
economic features of different models that permit falsification, including the important role of
cost pass-through. We also show that standard excluded instruments typically permit falsifi-
cation in commonly used IO settings, both under constant and non-constant marginal costs.

The results in this paper give a new perspective on the foundations of empirical work
that tests firm conduct. While testing conduct in finite samples requires additional statisti-
cal assumptions, fundamental economic differences are what ultimately distinguish models
of conduct (see Appendix A). For applied researchers looking to use existing econometric
procedures to evaluate a class of models of conduct, our framework allows them to determine
ex ante which (if any) of the standard sources of variation in the data has the potential to
distinguish the true model.

Moreover, our results provide a framework to propose and analyze new instruments and
classes of models to be tested in applications. As one example, in ongoing work, Dearing,
Magnolfi, and Sullivan (2022) use this framework to show that variation in ad-valorem taxes
can falsify models of uniform versus local pricing, cost-plus pricing and constant markups
models that cannot be falsified with standard cost or demand side instruments. We similarly
anticipate that the results in this paper will offer a useful tool for researchers tackling new
classes of models or instruments in a wide range of empirical settings.
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Appendix A Connection with Testing in Finite Sample

In the paper we discuss falsification of models of conduct. The population analysis that we
develop, however, underpins the standard testing procedures used in empirical IO. To show
that, we use the environment and notation of Duarte et al. (2022). In that environment, the
falsifiable restriction in Lemma 1 implies a condition on the MSE of predicted markups, or

E
[(

∆z
0jt −∆z

mjt

)2
]

= 0,

where predicted markups for model m and the truth are constructed as:

∆z
m = zΓm, where Γm = E

[
z′z
]−1

E
[
z′∆m

]
,

and cost shifters are controlled for by orthogonalizing all variables with respect to wjt.
Note that, to implement the testability condition, the conditional moments of Lemma 1 are
converted to unconditional moments.

The MSE in predicted markups can thus be used to measure lack-of-fit for model m
when compared to the true model. Let Qm = E

[(
∆z

0jt −∆z
mjt

)2
]
denote the lack-of-fit.

When Qm > 0, model m is falsified. Duarte et al. (2022) show that we can also express Qm

as a GMM objective function:

Qm = g′mWgm,

where gm = E[zjt(pjt −∆mjt)] and W = E[zjtz
′
jt]
−1 is the weight matrix.

To operationalize a test for conduct,24 researchers need to specify statistical hypotheses.
Proposition 1 of Duarte et al. (2022) establishes that the statistical hypotheses that charac-
terize the Rivers and Vuong (2002) (RV) test, as well as other tests used in the literature,
can be expressed in terms of Qm. The threat of misspecification suggests that researchers
apply model selection tests, such as RV. For the RV test, the null hypothesis states that two
competing models of conduct m = 1, 2 have the same lack-of-fit, or

HRV
0 : Q1 = Q2,

24In cases where models of conduct are nested, researchers have also pursued an estimation approach.
Nevo (1998) and Magnolfi and Sullivan (2022) contrast testing versus estimation in this context.
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while the alternatives correspond to cases of superior fit of one of the two models:

HRV
1 : Q1 < Q2 and HRV

2 : Q2 < Q1.

With this formulation of the hypotheses, the testing procedure determines which of the two
models has the smallest lack of fit.

This model selection procedure naturally leverages falsification of either (or both) of the
candidate models. When one of the two models is falsified (say, m = 2), and the other is not,
this implies that Q2 > Q1 = 0, so that the RV test asymptotically rejects in favor of model
1. The findings in this paper on falsification of specific models thus help to understand the
economic reasons behind the test results. For instance, consider the case of testing the two
models of Bertrand (m = 1) and Cournot (m = 2), when the former is the true model, using
cost side instruments. Because the pass-through matrices are different and the Bertrand
pass-through matrix is not diagonal with logit demand, Cournot is falsified so that Q1 = 0

and Q2 > 0. The RV test asymptotically concludes for the true Bertrand model.
Importantly, when both models are not falsified, the RV test statistic is degenerate,

causing severe inferential problems. Duarte et al. (2022) discuss this case and show that
it corresponds to irrelevant instruments for testing. Our results help researchers prevent
choices of instruments that may not achieve falsification, thus being irrelevant. For instance,
suppose that the researcher wanted to test the two models of Cournot (m = 1) and perfect
competition (m = 2), when the former is the true model, using cost side instruments under
logit demand. In this case, perfect competition is not falsified, so that cost side instru-
ments are irrelevant. Instead, the use of product characteristics as instruments would avoid
degeneracy and allow the researcher to asymptotically conclude for the true model.

Appendix B Proofs

Proof of Lemma 1. As we note in the text, in our parametric framework, the falsifiable
restriction in Equation (28) of Berry and Haile (2014) is25

E[ωmjt | wjt, zjt] = E[pjt −∆mjt − c̄mj(wjt) | wjt, zjt] = 0 a.s.

Since observed prices are generated under the true model as

pjt = ∆0jt + c0jt = ∆0jt + c̄0j(wjt) + ω0jt

25See Section 6, Case 2 in Berry and Haile (2014) for a discussion of their non-parametric environment.
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and E[ω0jt | wjt, zjt] = 0 under Assumption 2, the falsifiable restriction is equivalent to

E[∆0jt + c̄0j(wjt) + ω0jt −∆mjt − c̄mj(wjt) | wjt, zjt] = 0 a.s.

or equivalently

E[∆0jt −∆mjt | wjt, zjt] = c̄mj(wjt)− c̄0j(wjt) a.s.

giving the result.

Proof of Lemma 2. We prove the inverse of both directions. If the model is not falsified,
then there exists a set of cost functions {c̄mj(wjt)}j satisfying the falsifiable restriction.
Since neither c̄mj nor c̄0j can depend on the instruments, this means (by Lemma 1) that for
each j and each value of wjt, the expectation E[∆0jt − ∆mjt|wjt, zjt] is almost everywhere
constant with respect to zjt. Taking the limit

lim
h→0

E[∆0jt −∆mjt | wjt, zjt = z̃jt + hk]− E[∆0jt −∆mjt | wjt, zjt = z̃jt]

h

as in the text and noting that this must be 0 almost surely, this becomes

E

[
d∆0jt

dz(k)
jt

−
d∆mjt

dz(k)
jt

| wjt, zjt

]
= 0 a.s.

giving the result.

For the opposite direction, if for every j and k, E
[
d∆0jt

dz(k)jt

− d∆mjt

dz(k)jt

| wjt, zjt

]
= 0 almost

surely, then E[∆0jt − ∆mjt | wjt, zjt] must be the same for almost all values of zjt. If so,
define

c̄mj(wjt) = c̄0j(wjt) + Ezjt
[
E[∆0jt −∆mjt | wjt, zjt]

]
and c̄mj satisfy the equality condition in Lemma 1 almost surely, so the model is not falsified.

Proof of Proposition 1. See text preceding Proposition 1.

Proof of Corollary 1. Let z(k)
jt , the k-th instrument for product j, be the ith cost shifter of

rival product `, with τ (i) 6= 0. Since our instruments are cost shifters, under Assumption 6,
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∂∆mjt

∂z
(k)
jt

and ∂∆0jt

∂z
(k)
jt

are both 0. From Proposition 1, then, model m is falsified if for some (j, k),

E

[(
P−1
mt − P−1

0t

)
j

dp0

dz(k)
jt

| wjt, zjt

]
6= 0 w.p.p.

Since the instrument z(k)
jt is a cost shifter of product ` 6= j,

dp0

dz(k)
jt

=
∂p0

∂ct

∂ct

∂z
(k)
jt

= P0te`τ
(i),

where e` is the `-th vector of the canonical basis. As a result, model m is falsified if

τ (i)E
[(
P−1
mt P0t − I

)
j
e` | wjt, zjt

]
6= 0 w.p.p.

for some j and some ` 6= j. Since by assumption τ (i) 6= 0, if we choose ` and j such that
the (j, `) element of E[P−1

mt P0t | wjt, zjt] is nonzero, this condition holds and the model is
falsified.

Proof of Corollary 2. By Lemma 2, falsifiability comes down to whether for some j and k,

E

[
d∆0jt

dz(k)
jt

−
d∆mjt

dz(k)
jt

| wjt, zjt

]
6= 0 w.p.p.

Let z(k)
jt be the i-th characteristic of product `, and let x(i)

t denote the vector of that char-
acteristic for all J products. Note that x(i)

t has both a direct effect on ∆mt and an indirect
effect through its impact on equilibrium prices,

d∆mt

dx(i)
t

=
∂∆mt

∂x
(i)
t

+
∂∆mt

∂pt

dp0

dx(i)
t

where dp0
dx(i)t

is the effect of x(i)
t on equilibrium prices under the true model 0.

Under Assumption 8, x(i)
jt and pjt affect ∆mt and ∆0t directly only through δjt, so

∂∆mt

∂x
(i)
t

=
∂∆mt

∂δt

∂δt

∂x
(i)
t

=
∂∆mt

∂δt
β(i)I

and
∂∆mt

∂pt
=

∂∆mt

∂δt

∂δt
∂pt

=
∂∆mt

∂δt
(−αI)
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and, putting the two together,

∂∆mt

∂x
(i)
t

= −β
(i)

α

∂∆mt

∂pt

We already defined the notation H∆mt
= ∂∆mt

∂pt
, so ∂∆mt

∂x
(i)
t

= −β
(i)

α
H∆mt

.

Next, to calculate dpt
dx(i)t

, recall that equilibrium prices are defined implicitly as the solution
to the true first-order conditions F (·) = pt− ct−∆0t = 0. By the implicit function theorem,

dpt
dx(i)

t

= −
[
∂F

∂pt

]−1
[
∂F

∂x
(i)
t

]
= −

[
I −H∆0t

]−1

[
−∂∆0t

∂x
(i)
t

]
= −

[
I −H∆0t

]−1

[
β(i)

α
H∆0t

]

Recalling that Pmt = (I −H∆mt
)−1, this is

dpt
dx(i)

t

= −β
(i)

α
P0t

(
I − P−1

0t

)
=

β(i)

α
(I − P0t)

Plugging these into d∆mt

dx(i)t

= ∂∆mt

∂x
(i)
t

+ ∂∆mt

∂pt

dpt
dx(i)t

gives

d∆mt

dx(i)
t

= −β
(i)

α
H∆mt

+H∆mt

(
β(i)

α
(I − P0t)

)
= −β

(i)

α
H∆mt

P0t = −β
(i)

α
(I − P−1

mt )P0t

From this,

E

[
d∆0jt

dz(k)
jt

−
d∆mjt

dz(k)
jt

| wjt, zjt

]
= E

[
β(i)

α

(
(P−1

0t − P−1
mt )P0t

)
j,`
| wjt, zjt

]

=
β(i)

α
E
[(
I − P−1

mt P0t

)
j,`
| wjt, zjt

]
Thus, unless E[(P−1

mt P0t)j | wjt, zjt] = e′j for each j almost surely, there is some (j, k) satisfying

E

[
d∆0jt

dz(k)jt

− d∆mjt

dz(k)jt

| wjt, zjt

]
6= 0 w.p.p., the condition for falsifiability under Lemma 2.

Proof of Lemma 3. In our parametric framework, the falsifiable restriction in Equation (28)
of Berry and Haile (2014) is that for all j there exists a cost function c̄mj such that:

E[pjt −∆mjt | wjt, zjt] = E[c̄mj(qjt,wjt) | wjt, zjt] a.s.

By plugging in for pt as in the proof of Lemma 1, a model m is not falsified if for all j there
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exists a cost function c̄mj such that

E[∆0jt −∆mjt | wjt, zjt] = E[c̄mj(qjt,wjt)− c̄0j(qjt,wjt) | wjt, zjt] a.s.

The result thus follows by extending Lemma 2 to this restriction, so that a model is falsified
if for some j there exists no cost function c̄mj such that for all k

E

[
d∆0jt

dz(k)
jt

−
d∆mjt

dz(k)
jt

| wjt, zjt

]
= E

[
dc̄mj(qjt,wjt)

dz(k)
jt

−
dc̄0j(qjt,wjt)

dz(k)
jt

| wjt, zjt

]
a.s.

Proof of Corollary 3. By assumption, we have that for all j there exists c̄(1)
mj such that

E

[
d∆0jt

dz(1)
jt

−
d∆mjt

dz(1)
jt

| wjt, zjt

]
= E

[
dc̄(1)

mj(qjt,wjt)

dz(1)
jt

−
dc̄0j(qjt,wjt)

dz(1)
jt

| wjt, zjt

]
a.s.

Writing the total effect d∆mjt

dz(1)jt

of the instrument on each model’s markups as the sum of

the direct and indirect effects, and writing the indirect effects in terms of the change in
equilibrium market shares rather than prices, gives

d∆mjt

dz(1)
jt

=
∂∆mt

∂z
(1)
jt

+
∂∆mt

∂pt

∂pt
∂qt

dqt
dz(1)

jt

From there, Equations (11) and (12) imply that for any k,

d∆0jt

dz(k)
jt

−
d∆mjt

dz(k)
jt

=
∂∆0j

∂z
(k)
jt

−
∂∆mj

∂z
(k)
jt

+
(
P−1
mt − P−1

0t

)
j

∂pt
∂qt

dqt
dz(k)

jt

= ζk

(
∂∆0j

∂z
(1)
jt

−
∂∆mj

∂z
(1)
jt

+
(
P−1
mt − P−1

0t

)
j

∂pt
∂qt

dqt
dz(1)

jt

)

= ζk

(
d∆0jt

dz(1)
jt

−
d∆mjt

dz(1)
jt

)
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and

dc̄(1)
mj(qjt,wjt)

dz(k)
jt

−
dc̄0j(qjt,wjt)

dz(k)
jt

=

(
dc̄(1)

mj(qjt,wjt)

dqjt
−

dc̄0j(qjt,wjt)

dqjt

)
dqjt
dz(k)

jt

= ζk

(
dc̄(1)

mj(qjt,wjt)

dqjt
−

dc̄0j(qjt,wjt)

dqjt

)
dqjt
dz(1)

jt

= ζk

(
dc̄(1)

mj(qjt,wjt)

dz(1)
jt

−
dc̄0j(qjt,wjt)

dz(1)
jt

)

Therefore, we have that for any k and j, c̄(1)
mj is such that

E

[
d∆0jt

dz(k)
jt

−
d∆mjt

dz(k)
jt

| wjt, zjt

]
= E

[
dc̄(1)

mj(qjt,wjt)

dz(k)
jt

−
dc̄0j(qjt,wjt)

dz(k)
jt

| wjt, zjt

]
a.s.

and by Lemma 3 the result follows.

Appendix C Markup Assumption

Assumption 6 holds naturally for a wide range of models where firms choose actions to
maximize profits. We suppress the market index t and suppose for simplicity that products
i = 1 through f are sold by the same firm, and that the firm chooses a set of actions {ai}fi=1

to maximize profits,
max
{ai},i∈f

∑
i∈f

(pi(a)− ci)si(a)

where prices p(·) and market shares s(·) are determined by the actions taken by all firms.
First-order conditions are then

f∑
i=1

∂pi
∂aj

si +

f∑
i=1

(pi − ci)
∂si
∂aj

= 0
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or 

∂s1
∂a1

∂s2
∂a1

· · · ∂sf
∂a1

∂s1
∂a2

∂s2
∂a2

· · · ∂sf
∂a2

...
...

...
...

∂s1
∂af

∂s2
∂af

· · · ∂sf
∂af





p1 − c1

p2 − c2

...

pf − cf


= −



∑
i∈f si

∂pi
∂a1

∑
i∈f si

∂pi
∂a2

...

∑
i∈f si

∂pi
∂af


Stacking across firms, we then get[

Ω�
[
∂s

∂a

]′]
∆ = −

[
Ω�

[
∂p

∂a

]′]
s

where Ω is the ownership matrix,26 and therefore

∆ = −
[
Ω�

[
∂s

∂a

]′]−1 [
Ω�

[
∂p

∂a

]′]
s

Note that the right-hand side has no room for costs or product characteristics to enter
directly – it’s all just ownership structure and the way that firm actions a map to market
outcomes (p, s), which depends on the demand system.

(Within this more general model, Bertrand is just the special case where firms choose
prices, so p(a) = a and therefore ∂p

∂a
= I; and Cournot is the special case where firms choose

quantities so s(a) = a and ∂s
∂a

= I. Here we’re being more general about what exactly firms
are choosing, and therefore what exactly they’re assuming other firms are holding fixed while
they optimize.)

This assumption also holds if firms maximize any weighted sum of their own profits, other
firms’ profits, and consumer surplus (or total welfare). Suppose the firm selling product j
maximizes

J∑
i=1

γji(pi − ci)si + λjCS

where γji is the weight the firm puts on the profits from product i (whether or not i is one
of the same firm’s products) and CS is consumer surplus. The first-order condition with

26This is defined as Ωij = 1 if products i and j are sold by the same firm, and zero otherwise.

47



respect to action aj is then

J∑
i=1

γji
∂pi
∂aj

si +
J∑
i=1

γji(pi − ci)
∂si
∂aj
− λjsj = 0

or, stacking and rearranging,

∆ =

[
Γ�

[
∂s

∂a

]′]−1 [
Λ− Γ�

[
∂p

∂a

]′]
s

where Γ is a matrix of the γji terms and Λ is a diagonal matrix of the λj terms. Once again,
the right-hand side contains only constants and features of the demand system, not costs or
product characteristics.

Finally, consider a market with some first-movers and some second-movers. To avoid
getting bogged down in notation, we show the result for two single-product firms facing
general demand, but the intuition is the same more generally. Conditional on the action
a1 chosen by the first-mover, the second-mover chooses a2 to maximize (p2 − c2)s2, giving
first-order condition

(p2 − c2)
∂s2

∂a2

+
∂p2

∂a2

s2 = 0

Defining F (a1, a2) as the left-hand side, then, a2 is implicitly defined as a function of a1 as
the solution to F (a1, a2) = 0, so by the implicit function theorem,

a′2(a1) = −
∂F
∂a1
∂F
∂a2

= −
∂p2
∂a1

∂s2
∂a2

+ (p2 − c2) ∂
2
s2

∂a2∂a1
+ ∂

2
p2

∂a1∂a2
s2 + ∂p2

∂a2

∂s2
∂a1

∂p2
∂a2

∂s2
∂a2

+ (p2 − c2)∂
2
s2

∂a
2
2

+ ∂
2
p2

∂a
2
2

s2 + ∂p2
∂a2

∂s2
∂a2

We can go a step further, rewriting firm 2’s first-order condition as p2 − c2 = −∂p2
∂a2
s2

/
∂s2
∂a2

and plugging that into the expression for a′2, to emphasize that a2 depends only on features
of the demand system (how p and s respond to a) and therefore not directly on costs. The
first-mover’s problem is

max(p1(a1, a2(a1))− c1)s1(a1, a2(a1))

with first-order condition

∂p1

∂a1

s1 +
∂p1

∂a2

a′2s1 + (p1 − c1)
∂s1

∂a1

+ (p1 − c1)
∂s1

∂a2

a′2 = 0
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whence

p1 − c1 = −
∂p1
∂a1
s1 + ∂p1

∂a2
a′2s1

∂s1
∂a1

+ ∂s1
∂a2
a′2

We therefore have both firms’ markups pj − cj as functions of the demand system, with no
place for marginal costs or product characteristics to enter directly. If we had infinite pa-
tience, we could make this same argument for the general model of many multi-product firms
with some first- and some second-movers, and by induction, with more than two “rounds” of
actions.

Appendix D Sequential versus Simultaneous Compe-

tition Example

Suppose that firms compete in prices, but in the true model, firm 1 moves first, committing
to its price p1t before firm 2 chooses its price. We’ll label this model SB1, for Stackelberg-
Bertrand with firm 1 as the first mover.

Result 11. If the true model is sequential price competition with firm 1 moving first (SB1),
then simultaneous price competition, and sequential price competition with firm 2 moving
first, can both be falsified using either type of instruments.

If the true model is simultaneous price competition, a model of sequential price competition
with either firm moving first can be falsified with either type of instruments.

Once p1t has been set, firm 2 takes it as fixed and maximizes (p2t − c2t)s2t, leading to
markup p2t − c2t = − s2t

∂s2t/∂p2t
= 1

α(1−s2t)
. Firm 1, however, accounts for firm 2’s response to

its own price, solving
max
p1t

(p1t − c1t) s1t(p1t, p2t(p1t))

giving first-order condition

s1t + (p1t − c1t)

(
∂s1t

∂p1t

+
∂s1t

∂p2t

dp2t

dp1t

)
= 0

With p2t(p1t) defined implicitly as the solution to firm 2’s first-order condition, we can
calculate dp2t

dp1t
via the Implicit Function Theorem, and find that it simplifies to dp2t

dp1t
= s1ts2t

1−s2t
,

allowing us to write firm 1’s first-order condition as

s1t + (p1t − c1t)

(
−αs1t(1− s1t) + αs1ts2t

s1ts2t

1− s2t

)
= 0
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and therefore, after some simplificiation, we can calculate the markup function as

∆SB1t =
1

α

 1
s0t

1−s2t
+s1ts2t

1
1−s2t


While the algebra gets messy, we can calculate

P−1
SB1t =


(s0t+s1ts2t(1−s2t))

2
+s0ts1t−s1ts2t(1−s2t)

2
(1−2s1t)

(s0t+s1ts2t(1−s2t))
2

−s1ts2t(1−s2t)
2
(1−2s2t)

(s0t+s1ts2t(1−s2t))
2

− s1ts2t
(1−s2t)

2
1

1−s2t


and, dropping a constant,

PSB1t ∝


1

1−s2t
s1ts2t(1−s2t)

2
(1−2s2t)

(s0t+s1ts2t(1−s2t))
2

s1ts2t
(1−s2t)

2
(s0t+s1ts2t(1−s2t))

2
+s0ts1t−s1ts2t(1−s2t)

2
(1−2s1t)

(s0t+s1ts2t(1−s2t))
2


Recalling from earlier that simultaneous price competition gives inverse pass-through

P−1
Bt =

 1
1−s1t

− s1ts2t
(1−s1t)

2

− s1ts2t
(1−s2t)

2
1

1−s2t


we can calculate the signs of off-diagonal terms of P−1

Bt PSB1t as

P−1
Bt PSB1t =

[
? −
0 ?

]

Since the upper-right off-diagonal is always negative, it must be negative in expectation,
giving the first result. We can similarly show that the upper-right off-diagonal of P−1

SB1tPBt is
always positive, so we can falsify SB1 when the true model is Bertrand. And finally, we can
calculate PSB2t, the pass-through matrix when firm 2 is the first-mover, and show that the
top-right offer-diagonal of P−1

SB1tPSB2t is always positive, so we can falsify the model where
the wrong player is first-mover.

For intuition, note first that the bottom-left off-diagonal term of P−1
Bt PSB1t being zero

is not a knife-edge fluke, but an economically meaningful result. As in the upstream-
downstream example in the text, under either simultaneous or sequential competition with
firm 1 moving first, firm 2 chooses a price which is a static best-response to the actual value
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of p1t. As a result, the response of p2t to a change in p1t is the same under either model; the
two differ only in how p1t is determined. So while a shock to c1t will affect both equilibrium
prices differently in the two models, the marginal effect on p2t relative to the effect on p1t

will be exactly the same. As a result, a shock to c1t will not be interpreted as a change in
c2t under either model, so the wrong model cannot be falsified through that channel.

On the other hand, the top-right off-diagonal term of P−1
Bt PSB1t is always negative. For

most markets, the Stackelberg model, like simultaneous competition, predicts positive pass-
through of c2 to p1; but sequential competition predicts a smaller pass-through of costs,
relative to the pass-through of c2 to p2, than does simultaneous competition. Under Bertrand
competition, an increase in c2t increases p2t, which increases p1t because the two firms’ prices
are strategic complements. This happens as well with Stackelberg-Bertrand, but with an
added effect: since dp2t

dp1t
= s1ts2t

1−s2t
is increasing in s2t, the increase in c2t, by increasing p2t,

decreases the sensitivity of p2t to p1t. This leads firm 1 to lower its price, since firm 2 will
not respond as strongly as before. The net effect is that an increase in c2t induces a smaller
increase in p1t under sequential competition. In the extreme case where s2t >

1
2
, this dynamic

effect (the reduction in dp2t
dp1t

) dominates and firm 1 will cut its price when c2 goes up. In
that case, falsifying sequential competition from the effect of c02 on cm1 is most obvious – an
increase in c02 leads to a decrease in p1, which in a model of simultaneous competition could
only be rationalized by an accompanying decrease in c1.

We can also consider the model of sequential competition in quantities. Suppose again
that firm 1 moves first. With s1t set, firm 2 solves

max
s2t

(p2t(s1t, s2t)− c2t)s2t

with first-order condition p2t−c2t+
∂p2t
∂s2t

s2t = 0, from which we can calculate p2t−c2t = 1
α

1−s1t
s0t

as well as ds2t
ds1t

= − s2t
1−s1t

. Moving first, firm 1 solves

max
s1t

(p1t(s1t, s2t(s1t))− c1t)s1t

giving first-order condition

s1t

(
∂p1t

∂s1t

+
∂p1t

∂s2t

ds2t

ds1t

)
+ (p1t − c1t) = 0

Plugging in (using
[
∂pt
∂st

]
=
[
∂st
∂pt

]−1

) and simplifying, we get p1t − c1t = 1
α(1−s1t)

. From the
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markup function

∆SC1t =

[
1

α(1−s1t)
1−s1t
αs0t

]
(with m = SC1 for Stackelberg-Cournot with firm 1 as the first mover), we then calculate

P−1
SC1t =

 1
1−s1t

− s1ts2t
(1−s1t)

2

0 1−s1t
s0t

 and PSC1t = s0t

 1−s1t
s0t

s1ts2t
(1−s1t)

2

0 1
1−s1t


Since the pass-through and inverse pass-through matrices of simultaneous Cournot compe-
tition are both diagonal, this immediately gives us the top-right off-diagonal of P−1

SC1tPCt is
negative and the top-right off-diagonal of P−1

Ct PSC1t is positive. Using symmetry, we can
easily calculate PSC2t, the pass-through matrix if firm 2 is the first mover, and find that
P−1
SC2tPSC1t has a negative bottom-left and positive top-right off-diagonal. This gives the

results:

Result 12. If the true model is simultaneous quantity setting, sequential quantity setting
can be falsified with either type of instrument.

If the true model is sequential quantity setting, simultaneous quantity setting, and se-
quential quantity setting with the wrong first-mover, can both be falsified with either type of
instrument.
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