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Motivation

• The outcomes of government policy are shaped by the response of markets

• Thus, we seek answers to a wide range of policy questions from empirical models of
demand and supply, used to perform market counterfactuals

• E.g., effect of taxes and subsidies, product regulations, competition policy, and more

• Credible empirical models of markets require balance between data and structure

• Key achievement of IO approach: enable flexible estimation of demand, rich subst. patterns

• Otherwise, ans. to counterfactual questions driven by assumption/parametric restrictions

• What about supply?
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Motivation

• Market counterfactuals crucially depend on the supply (i.e., conduct and cost) specification

• Examples:

• Price response to selective tax/tariff depends on strategic complements/substitutes
• Economies of scale/scope matter in response to industry consolidation/mergers

• Standard approach imposes strong assumptions on supply

• E.g., Bertrand-Nash oligopoly with constant marginal cost

• Can we provide useful market counterfactuals without restrictive assumptions on supply?
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What We Do I

• Consider a nonparametric model of supply

• Supply fct. that captures markup + costs, depends on endogenous prices and quantities

• Reflects notion that prices are set in market equilibrium, but no structure on conduct or cost

• Show identification with appropriate supply instruments

• Can leverage both variation in (own and rival) demand shifters, and rival cost shifters
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What We Do II

• Estimate model with ML/AI: deep learning + objective function with instruments

• Adapt Variational Method of Moments (VMM) (Bennett and Kallus, 2023)

• Better performance with high-dimensional data than standard nonpar-IV (e.g., series)

• We develop an inference procedure to quantify uncertainty in prediction
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What We Do III

• Simulations show that nonparametric model is practical with moderate sample

sizes/variation, outperforms misspecified models

• Simulations across many counterfactuals showcase performance

• Application: mergers in airline markets

• Portable method, computationally manageable
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Literature

• We build on existing nonparametric approaches to markets for differentiated products

• Nonparametric identification: Berry and Haile (2014)
• Nonparametric approaches to demand: Compiani (2022), Tebaldi, Torgovistky, and Yang

(2023), Brand and Smith (2025), ...
• Flexible approaches to supply: Gandhi and Houde (2020), Otsu and Pesendorfer (2024)

• Complementary to testing/parametric estimation approaches

• Modern testing approaches (e.g., Backus, Conlon, and Sinkinson 2021, Duarte et al. 2023)

also let data shape supply by selecting conduct model within menu
• Trade-off: flexibility vs. data/variation requirements

• Part of broader trend of using ML/AI to enhance structural modeling

• E.g., Kaji, Manresa, and Pouliot (2023)
• We use Bennet and Kallus (2023) for ML/AI approach to nonparametric IV
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A Model of Market Equilibrium

• We observe data on a set of differentiated products J across T markets:
• Consumers and firms’ behavior results in outcomes pjt (prices) and sjt (market shares)
• Exogenous observables include characteristics xjt , cost shifters wjt

• Exogenous unobservables are unobserved quality ξjt and unobserved cost shifter ωt

• Useful transformations of endogenous variables include demand derivatives Dt and quantities qt

• Market equilibrium is determined by demand and supply:

st = s(pt , xt , ξt)︸ ︷︷ ︸
Demand

, pt = ∆(pt , st ,Dt ; ·)︸ ︷︷ ︸
Markups

+ c(qt ,wt , ωt)︸ ︷︷ ︸
Marginal costs

• Markups can depend on other exogenous variables, e.g., ownership matrix Ht

• Allow for conduct and cost to depend on firm identity, denote ∆j , cj scalar valued functions

• General static setting, can be extended to other endogenous non-price variables (not today)
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Assumptions: DGP and Observables

1. (Equilibrium Selection) There exists a unique equilibrium, or the equilibrium selection rule

is such that the same pt arises whenever the vector (wt , xt , ωt , ξt) is the same.

2. (Separability of Cost) The cost function is separable in unobservable shocks:

c(qt ,wt , ωt) = c̄(qt ,wt) + ωt .

3. (Known Demand) The matrix of demand derivatives is known, so that Dt is observed.

4. (Markup Dependence) The markup function ∆ depends only on endogenous market shares

st and the matrix of demand derivatives Dt .

• Assumption 4 general (includes most standard static oligopoly models) but not without loss
• e.g., Bertrand/profit weights: ∆ = (Ht ⊙ Dt)

−1 st Cournot: ∆ =
(
Ht ⊙ (D−1

t )′
)
st

• Demand is known, supply (∆ and c̄) is not
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Market Counterfactuals

• Policy changes of interest exogenously change primitive object a → ã

• New market outcomes can be computed by solving fixed point:

p̃t = ∆̃(p̃t , s̃(p̃t , x̃t , ξ̃t)) + c̃(q̃t , w̃t) + ω̃t

• We can express counterfactuals as a map F (p̃, s̃, ·) from structural objects and exogenous

variables to outcomes of interest, e.g., prices, shares, consumer welfare, etc.
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Estimating Counterfactuals

• Evaluating the map F requires knowledge of (counterfactual) primitives, exogenous

observables, and unobservables

• Researchers use a combination of data and theory/assumptions

• We typically estimate functions s and c , and assume ∆ with a model of conduct
• Allows us to specify ξ̃, ω̃ and either fix or deterministically change s̃, c̃ , ∆̃

• Trade off practicality and data limitations with the dangers of misspecification

• Estimation of nonparametric models has a curse of dimensionality and requires rich data
• Misspecification can result in misleading results and subsequent counterfactuals

• Next: a feasible nonparametric model of supply
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Nonparametric Model of Supply

• Recall DGP, under assumptions 1-4:

pjt = ∆j(st ,Dt ,Ht) + cj(qt ,wjt) + ωjt

• Without further restrictions, as qjt = sjtMt for scalar market size Mt :

pjt = hj(st ,Dt ,wjt ;Ht ,Mt) + ωjt

for supply function h(·) ≡ ∆(·) + c̄(·)
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Remarks

• Notice that formulation of h does not enforce separability of cost and markup

• Extension I: we can assume a model of conduct, and recover costs flexibly (not today)
• Extension II: we can assume a cost function, and recover markup functions flexibly (not today)
• Extension III: we can allow separability with more instruments and variation (not today)

• For counterfactuals, find the prices p̃t that solve:

p̃t − ĥ(s(x̃t , p̃t),D(x̃t , p̃t), w̃t ; H̃t)− ω̂t = 0

• We can define a map F to counterfactuals of interest using estimated objects
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Which Counterfactuals?

• This nonparametric supply structure enables a wide range of counterfactuals

• Changes in ownership resulting from mergers, firm/product exit, and product divestment
• Regulations that alter product characteristics or cost shifters, e.g., fuel economy standards
• Unit and ad valorem taxes with variation across products and/or markets

• We can measure equilibrium prices, quantities, and changes in consumer welfare (and, in

the case of a tax, government revenue and incidence)

• Important limitations of our approach:

• Cannot measure markups and cost levels separately
• Cannot alter cost or markups separately
• (Can be addressed w/ extensions of the method)
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Identification of h

• Key identification challenge: the st and Dt arguments of h are endogenous

• We rely on a moment condition with supply instruments zjt for identification. Assume:

5. (Instrument Exogeneity and Exclusion) The vector of instruments zjt that satisfies

E[ωjt | zjt ,wjt ] = 0 contains demand shifter(s) x
(e)
jt that are excluded from the vector wjt .

6. (Completeness) For all functions B(st ,Dt ,wt ;Ht) with finite expectation, if

E[B(st ,Dt ,wt ;Ht) | zjt ,wjt ] = 0 almost surely, then B(st ,Dt ,wt) = 0 almost surely.

• Result: under 1.-6., hj is identified for each j

• Proof follows arguments akin to Berry and Haile (2014)
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Instruments and Data Requirements

• Candidate supply instruments - need 2J + J(J − 1)/2, many candidates available

• Intuitively: rival cost shifters move st ; (own and rival) prod. characteristics move Dt

• Other instruments (e.g., variation in exogenous tax rates) may be available

• Must include demand shifters excluded from cost

• If not, e.g. w/ logit demand, may just recover inverse demand h = s−1

• Concern: will variation in the data suffice?

• We show simulation evidence later on that standard datasets may have enough variation

• Conduct/cost testing toolkit allows some flexibility in supply with discipline from theory

• E.g., procedures in Backus, Conlon, Sinkinson (2021), Duarte et al. (2023)
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Estimation and Inference VMM Inference

• Classic nonparametric estimators (e.g., series) are well studied for GMM-type setups
• For nonparametric IV problem, Ai and Chen (2003); Newey and Powell (2023)
• See reviews by Carrasco et al. (2007); Chen (2007)

• But, curse of dimensionality and instability in classical nonparametric estimation
• Documented in, e.g., Bennett et al. (2019); Bennett and Kallus (2020)
• (We make no general claim about the usefulness of classical methods)

• We employ the Variational Method of Moments (VMM)
• VMM accounts for endogeneity via moment conditions that standard neural networks ignore
• We develop a method for our nonparametric supply, adapting VMM + DNN
• Derive uniform prediction bands for prices, shares, consumer surplus, tax revenue

• Method in a nutshell:
• Deploy two DNNs to learn both optimal instruments and structural supply fcn h
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Why Neural Networks and VMM?

• Why neural network structures?

• Learn complex structures and achieve faster convergence rates than nonparametric benchmarks
• See Bauer and Kohler (2019); Schmidt-Hieber (2020); Kurisu et al. (2025)

• Example: Bertrand-Nash with sparse profit weights

• Prices (below) can be written in a sparse tensor decomp that depends on latent dim ℓ < J

ωj(p, c ,H,D) = pj − cj − [(H⊙ D ′)−1s]j ,

• Results in Schmidt-Hieber (2020) then implies that DNNs achieve faster convergence rates

• Why the Variational Method of Moments?

• In fixed-dimensional parametric settings, VMM coincides with OWGMM
• Inference properties are known; we develop inference for a complex functional of parameters
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Simulations Roadmap

How does our method perform?

I Does it handle realistic, high-dimensional environments well with moderate sample sizes?

II But, what’s inside the black box?

III What range of counterfactuals can it handle?
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Simulations Setup I

• Simple parametric simulations to evaluate absolute and relative performance

• For T = 100; 1, 000; 10, 000, market t has either

A: Jt = 2; 3 with equal probability (small)

B: J = 30, owned by 5 firms, as US beer market in Miller and Weinberg (2017)

• Training data is random 80% of the dataset (sampled by market)

• Demand is

A: simple logit, scalar unobservable ξjt , three observable xjt
B: RCNL as in Miller and Weinberg (2017)
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Simulations Setup II: Supply

• We simulate data under two different assumptions on conduct...

• Bertrand-Nash: Identity ownership matrix

• Profit-Weight: Off-diagonal weights of τ = 0.5

• ...cost specifications...

• Linear : Linear costs with two independent cost shifters wjt

• Economies of Scale: Marginal costs are quadratic in quantities

• ...and policy instruments

• Unit Taxes: Variation in unit taxes across market

• Ad Valorem Taxes: Variation in ad valorem taxes across markets
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Comparison of Models

• We recover ωB , ωM , and ωP under Bertrand, Monopoly, and perfect competition

• In the nonparametric supply model, we estimate h and recover ωV
jt :

pjt = ĥj (st ,Dt ,wjt ,Ht) + ωV
jt

• Supply instruments: own xjt , rival w−jt , sum of rival xjt ,wjt

• We run two types of simulation exercises:

1. For A, B: predict in test sample (20% of data) w/ estimated function ĥ and setting ωm
jt = 0

2. For A: Simulate counterfactual interventions in mkt t, predict residual ωm
jt under model m

• For both exercises, used demand and estimated supply to compute fixed point
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Test Sample Price Prediction Performance in A

Table 1: MSE Across Models, Bertrand DGP (Small Network), environment A

T True Model Standard Models Flexible Dt included

B M P

100 0.90 0.90 578.77 9.41
1.91 No

1.71 Yes

1, 000 0.89 0.89 1022.81 8.17
2.21 No

1.07 Yes

• Small network has 3× 3 hidden layer
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Test Sample Price Prediction Performance, Profit-Weight DGP in A

Table 2: MSE Across Models, Profit-Weight DGP (Large Network), environment A

T True Model Standard Models Flexible Dt included

B M P

1, 000 0.89 3.69 66.42 8.22
1.73 No

1.74 Yes

10, 000 0.96 4.02 77.08 8.79
1.23 No

1.05 Yes

• Large network has 100× 100 hidden layer

• (When we repeat this exercise 100 times w/ different random draws, initialization of NN,

we find tight MSE ranges)
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Test Sample Price Prediction Performance, Profit-Weight DGP in B

Table 3: MSE Across Models, Profit-Weight DGP, environment B

T True Model Standard Models Flexible (#h = 10) Flexible (#h = 200)

B M P

1, 000 1.19 3.86 3.76 3.31 2.96 1.58

10, 000 1.07 3.96 3.86 3.41 2.74 1.28

• #h is number of layers
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Key Takeaways

• Performance is

• in A, already reasonable with 100 markets, with 1,000 may be already close to match truth
• in B, ok with 1,000 markets, probably need closer to 10,000

• Adding derivatives helps, especially in larger samples

• Larger network structure useful to capture complex models of supply, but need more data
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Peeking Inside the Black Box: Pass-through

• Key question: How do we interpret the flexible ĥ we recover?

• A useful object for comparison is the pass-through matrix implied by ĥ

• To compute pass-through:

• Pick median post-merger market by inside share from simulations
• Increase costs c by 10%, loading increases on the residual ωV

• Solve for equilibrium prices under different models of conduct
• Compare price before and after cost change, report price change/cost change

26



Pass-through Comparison

Table 4: Simulated Pass-through Matrices

Panel A: Bertrand DGP

True Model

0.77 0.17

0.10 0.60

Flexible Supply

0.69 0.12

0.12 0.63

Panel B: Profit-Weight DGP

True Model (κ = 0.5)

0.35 -0.31

0.02 0.98

Flexible Supply

0.44 -0.21

0.01 0.91

• Flexible model learns economics of supply side, implies pass-throughs close to the true ones

• (Holds beyond this one market)
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Market Counterfactuals

• Results thus far show test sample performance

• Predict for markets out of the training sample, but from same DGP

• Key aspect of counterfactual prediction: (somewhat) out-of-sample

• Caveat when using our method:

• As with any nonparametric approach, will struggle too far from the support of the data

• Next set of simulations shows “how far is too far”

• (Throughout, T = 1, 000, env A, flex model estimated with small network structure)
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What Market Counterfactuals?

• Predict prices after product regulations alter cost shifters simulations

• E.g., environmental regulations could increase production costs

• Predict market shares after product regulation on product characteristics simulations

• E.g., bans on menthol in cigarettes or caps on sugar content could change consumption

• Predict welfare changes due to product entry or exit simulations

• E.g., introduction of a new vehicle or merging firms drop products

• Predict welfare changes due to mergers simulations

• E.g., mergers in which existing products have new ownership

• Predict revenues after changes in unit and ad valorem taxes simulations

• Governments could impose taxes on goods
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Computational Cost

• Implementation and computation is manageable

• We use the Python package torch for all models

• Model fit takes minutes with T = 100, an hour for T = 1, 000, and ∼a day for T = 10, 000
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Uncertainty in Counterfactuals

• What about uncertainty in prediction?

• With our VMM estimator, we can compute standard errors for counterfactual outcomes

• Two aspects:

• Computing standard errors is computationally tractable
• Uncertainty in prediction seems reasonable in simulations

• Exercise: show market-by-market prediction errors for product exit counterfactuals
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Inference on Counterfactual Prices

Figure 1: Inference on Counterfactual Product Exit Prices
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• With T = 1, 000, tight prediction intervals 32
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Application to Airline Mergers

• Good environment to test our method: airline markets in the US have rich data from DB1B
• Fares, passenger counts, distances, carrier identifiers, etc.
• Origin and destinations of trips
• Several large mergers in sample
• 1mln+ obs pooling quarterly data 2005-2019, we use ∼10,000 pre-merger markets for VMM
• Previous merger retrospectives (Peters, 2006)

• Estimate simple nested logit demand model

• Goal: predict unilateral price effects of American-US Airways merger in Q4 2013
• Zoom in on markets that move from 3 → 2 firms post-merger
• Treated markets are markets in which both merging firms are present

• (We abstract from many interesting aspects of the industry here...)

Mergers Prices Demand Fit

33



Merger Simulation: Predicted Price Changes Inference

Figure 2: Predicted Price Change Distribution
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• In theory, our flexible supply model could predict price decreases but it doesn’t here 34



Merger Simulation: Comparing Predicted and Observed Post-merger Prices

Figure 3: Merger Simulation Comparison
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Conclusion

• Market counterfactuals crucially depend on the supply model

• We develop a nonparametric model of supply for a range of counterfactuals
• Estimation technique uses deep learning + objective function with instruments
• Inference procedure quantifies uncertainty of a complex functional

• Simulation exercises and an empirical application showcase the method

• Outperform misspecified models across a host of counterfactuals
• Merger simulation in the airline industry outperforms the standard merger simulation toolkit

36



Thank You!
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Variational Method of Moments (VMM) Back

• Our model and assumptions imply a moment condition for the structural supply function:

E[pjt − hj(st ,Dt ,wt ,Ht) | zt ,wt ] = 0

• The VMM estimator (Bennett and Kallus, 2023) for our setting is:

θ̂N = argminθ∈Θsupf ∈FN

1

TJ

∑
j ,t

f (zjt)
Tωjt(θ)−

1

4TJ

∑
j ,t

(f (zjt)
Tωjt(θ̃N))

2 − RN(f , h)

s.t. ωjt(θ) = pjt − hj(st ,Dt ,wt ,Ht ; θ, ) ∀j ∈ J

• θ̃N is preliminary estimate
• Both f and h are neural networks, allowing flexible controls of model complexity
• Quadratic term motivated by optimal weighting of making each moment condition zero
• RN(·) is regularizer that penalizes complexity



Quantifying Uncertainty Details + Algorithm Back

• We establish simultaneous confidence intervals for d predicted or counterfactual prices ĥ:

√
N(ĥ − h0)

d→ N(0,∇θ′h0Ω
−1
0 ∇θ′h

T
0 )

• Prices are not the only counterfactual of interest in economics research

• E.g., quantities, consumer surplus, government revenue

• Assuming smoothness of the counterfactual map F in prices, we establish:

√
N(F (ĥ)− F (h0))

d→ N(0,∇hF (h0)∇θh0Ω
−1
0 ∇θh

T
0 ∇hF (h0)

T )

• We can quantify uncertainty on other economic objects of interest

• Inference is possible for product-level, market-level, and aggregate objects



Inference: Simplest Case (d = 1) Back

• Note that ∇θ′h(θ0) is d × b; in the simplest case, suppose that d = 1

• Lemma 9 in Bennett and Kallus (2023) states that for any β ∈ Rb, we have:

βTΩ−1
0 β =− 1

4
inf

γ∈Rb
sup
f∈F

{
E[f (Z)T∇θω(X ; θ0)γ]−

1

4
E[(f (Z)Tω(X ; θ0))

2]− 4γTβ − RN(f , h)

}
(1)

• Take β = ∇θhx(θ0) and the above solution to the optimization problem becomes:

σ2
x = ∇θhx(θ0)Ω

−1
0 ∇θhx(θ0)

T

• This is the asymptotic variance for
√
N(hx(θ̂N)− hx(θ0))

• ∇θhx(θ0) can be difficult to compute analytically
• Numerical differentiation can be employed (e.g., Hong et al. (2015))
• Expectations can be replaced by sample means, θ̂N can be used in place of θ0
• These together yield a feasible version of Equation (1) which provides an estimator σ̂2

x for σ2
x



Inference: Extending to d ≥ 2 Back

• The approach above cannot obtain a covariance matrix when d ≥ 2

• Holm’s Step-Down procedure using the estimates for σ̂2
xj
and h(θ̂) for each j = 1, ..., d

• The set of critical values Tα is known for significance levels α
d+1−k and k = 1, ..., d

• We can use a folded normal distribution with t = 1 to account for bias

• For any ordering of x and fixed ordering Tα, we can compute the confidence interval:

hx(θ̂)± N− 1
2 σ̂xTα

• We compute this for all permutations of j = 1, ..., d , resulting in d! permutations of x

• This is because we must consider any possible ordering of the p-values of x1, ..., xd



Inference Algorithm Back

1. Estimate σ̂2
xj
for σ2

xj
for j ∈ {1, ..., d} ≡ J by solving the feasible version of Equation (1)

2. Fix values Tα = {Tαk
: k = 1, ..., d} where αk = α

d+1−k

3. For each permutation J̃ of J:

3.1 Arrange values x̃ and σ̂x̃ with permuted indices J̃

3.2 Construct bounds as hx̃(θ̂)± n−
1
2 σ̂x̃Tα with fixed Tα

4. Simultaneous confidence interval as the union of 2× d × d! linear constraints from Step (3)



Regulation of Cost Shifters

• For all counterfactuals, use RMPSE ≃ avg magnitude of percentage errors

• Implementation: add 1 to w
(1)
jt ∼ U(0, 1)

Table 5: RMPSE in Prices for Cost Shifter Regulation

                                                                                      Panel DGPs
Fitted Model             
                                A. Bertrand      B. Profit-Weight      C. Bertrand (Scale)      D. Profit-Weight (Scale)
Bertrand (Scale)             --                         --                               --                                     5.0
Bertrand (Const.)           --                       5.1                            3.5                                     6.0
Monopoly                     10.2                    5.1                            11.6                                   6.5
Perf Comp                     5.0                     6.3                             5.0                                    3.8
Flex Supply                   2.8                     2.5                             3.5                                    3.0

• Good absolute and relative performance for a fairly out-of-sample counterfactual



Regulation of Cost Shifters

Figure 4: Regulation of Cost Shifters
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Regulation of Cost Shifters with Economies of Scale

Figure 5: Regulation of Cost Shifters

Panel C. Bertrand DGP, Economies of Scale
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Regulation of Product Characteristics

• Implementation: add 1 to x
(1)
jt ∼ U(0, 1)

Table 6: RMPSE in Shares for Regulation of Product Characteristics

                                                                                      Panel DGPs
Fitted Model             
                                A. Bertrand      B. Profit-Weight      C. Bertrand (Scale)      D. Profit-Weight (Scale)
Bertrand (Scale)              --                        --                                --                                    20.3
Bertrand (Const.)            --                      21.0                            10.2                                 28.3
Monopoly                      31.9                   22.3                            15.9                                 11.1
Perf Comp                     32.9                   57.7                            12.7                                 16.4
Flex Supply                    5.0                     6.6                              6.6                                   9.2



Regulation of Product Characteristics

Figure 6: Regulation of Product Characteristics
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Regulation of Product Characteristics with Economies of Scale

Figure 6: Regulation of Product Characteristics

Panel C. Bertrand DGP, Economies of Scale
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• Predicting shares seems somewhat harder
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Product Exit

• Implementation: drop a product

Table 7: RMPSE in Consumer Surplus for Product Exit

                                                                                      Panel DGPs
Fitted Model             
                                A. Bertrand      B. Profit-Weight      C. Bertrand (Scale)      D. Profit-Weight (Scale)
Bertrand (Scale)             --                         --                                --                                  25.0
Bertrand (Const.)           --                        23.9                           7.7                                 23.2
Monopoly                    135.4                    47.8                          239.4                              79.6
Perf Comp                    40.1                     22.1                           19.1                               19.6
Flex Supply                   7.8                       5.0                             5.4                                 5.3



Product Exit

Figure 7: Product Exit
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Product Exit with Economies of Scale

Figure 7: Product Exit

Panel C. Bertrand DGP, Economies of Scale
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Multi-product Merger Simulation

• Implementation: change ownership of one product

Table 8: RMPSE in Consumer Surplus for Mergers

                                                                                      Panel DGPs
Fitted Model             
                                A. Bertrand      B. Profit-Weight      C. Bertrand (Scale)      D. Profit-Weight (Scale)
Bertrand (Scale)             --                         --                                --                                  4.8
Bertrand (Const.)           --                        5.0                             0.8                                 4.9
Monopoly                     23.1                     10.4                           20.8                                9.3
Perf Comp                    23.1                     10.4                           20.8                                9.3
Flex Supply                   1.5                       2.4                             4.9                                 3.9



Multi-product Merger Simulation

Figure 8: Merger Simulation
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Multi-product Merger Simulation with Economies of Scale

Figure 9: Merger Simulation

Panel C. Bertrand DGP, Economies of Scale
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Laffer Curves

• Implementation: augment DGP with unit and ad valorem taxes, generate some variation in

tax rate in training data

Table 9: MSE in Government Revenue for Laffer Curves

                                                                                      Panel DGPs
Fitted Model             
                                A. Bertrand (Unit)      B. Profit-Weight (Unit)      C. Bertrand (AV)      D. Profit-Weight (AV)
Bertrand                             --                                 0.13                                --                              0.27
Monopoly                         2.88                               0.54                             16.67                          2.04
Perf Comp                        0.17                               0.45                              0.96                           1.34
Flex Supply                      0.00                               0.00                              0.03                           0.05



Laffer Curves for Unit Taxes

Figure 10: Laffer Curves
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• In training data unit tax is U[4, 8]



Laffer Curves for Ad Valorem Taxes

Figure 11: Laffer Curves
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Airline Concentration Back

Figure 12: HHI in the Airline Industry

D
el

ta
−

N
or

th
w

es
t

U
ni

te
d−

C
on

tin
en

ta
l

A
m

er
ic

an
−

U
S

1200

1400

1600

1800

2005 2010 2015 2020
Date

H
H

I



Observed Price Changes after AA-US Merger Back

Figure 13: Price Change Distribution
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• Price changes after the AA-US merger in 3 → 2 markets



Demand Back

Table 10: Demand Estimates

log(sjt ) - log(s0t )

Average Fare -0.0048∗∗∗

(0.0004)

log(St ) 0.8356∗∗∗

(0.0133)

Share Nonstop 0.4030∗∗∗

(0.0282)

Average Distance (1,000’s) -0.4881∗∗∗

(0.0498)

Average Distance2 (1,000’s) 0.0485∗∗∗

(0.0045)

log(1 + Num. Fringe) -0.2642∗∗∗

(0.0057)

R2 0.94238

Observations 1,283,472

Own-price elasticity -5.1652

Origin-destination fixed effects ✓

• Elasticities broadly in line with literature (e.g., Berry and Jia, 2010)



Fit: Pooled In-Sample and Out-of-Sample Results Back

Figure 14: Model Comparison
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• Reduction of ∼ 40% in passenger-weighted MSE relative to Bertrand



Merger Simulation: Inference Back

Figure 15: Width of Confidence Intervals
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