# Market Counterfactuals with Nonparametric Supply: An ML/Al Approach

Harold D. Chiang Jack Collison Lorenzo Magnolfi Christopher Sullivan July 7, 2025 — Alpine IO Symposium

#### **Motivation**

- The outcomes of government policy are shaped by the response of markets
- Thus, we seek answers to a wide range of policy questions from empirical models of demand and supply, used to perform market counterfactuals
  - E.g., effect of taxes and subsidies, product regulations, competition policy, and more
- Credible empirical models of markets require balance between data and structure
- Key achievement of IO approach: enable flexible estimation of demand, rich subst. patterns
  - Otherwise, ans. to counterfactual questions driven by assumption/parametric restrictions
- What about supply?

#### **Motivation**

- Market counterfactuals crucially depend on the supply (i.e., conduct and cost) specification
- Examples:
  - Price response to selective tax/tariff depends on strategic complements/substitutes
  - Economies of scale/scope matter in response to industry consolidation/mergers
- Standard approach imposes strong assumptions on supply
  - E.g., Bertrand-Nash oligopoly with constant marginal cost
- Can we provide useful market counterfactuals without restrictive assumptions on supply?

#### What We Do I

- Consider a nonparametric model of supply
- ullet Supply fct. that captures markup + costs, depends on endogenous prices and quantities
- Reflects notion that prices are set in market equilibrium, but no structure on conduct or cost
- Show identification with appropriate supply instruments
  - Can leverage both variation in (own and rival) demand shifters, and rival cost shifters

#### What We Do II

- Estimate model with ML/AI: deep learning + objective function with instruments
- Adapt Variational Method of Moments (VMM) (Bennett and Kallus, 2023)
- Better performance with high-dimensional data than standard nonpar-IV (e.g., series)
- We develop an inference procedure to quantify uncertainty in prediction

#### What We Do III

- Simulations show that nonparametric model is practical with moderate sample sizes/variation, outperforms misspecified models
- Simulations across many counterfactuals showcase performance
- Application: mergers in airline markets
- Portable method, computationally manageable

#### Literature

- We build on existing nonparametric approaches to markets for differentiated products
  - Nonparametric identification: Berry and Haile (2014)
  - Nonparametric approaches to demand: Compiani (2022), Tebaldi, Torgovistky, and Yang (2023), Brand and Smith (2025), ...
  - Flexible approaches to supply: Gandhi and Houde (2020), Otsu and Pesendorfer (2024)
- Complementary to testing/parametric estimation approaches
  - Modern testing approaches (e.g., Backus, Conlon, and Sinkinson 2021, Duarte et al. 2023)
     also let data shape supply by selecting conduct model within menu
  - Trade-off: flexibility vs. data/variation requirements
- Part of broader trend of using ML/AI to enhance structural modeling
  - E.g., Kaji, Manresa, and Pouliot (2023)
  - We use Bennet and Kallus (2023) for ML/Al approach to nonparametric IV

# Roadmap

#### Market Equilibria and Counterfactuals

Nonparametric Model of Supply

Estimation and Inference

Monte Carlo Simulations

Empirical Application

Conclusion

### A Model of Market Equilibrium

- ullet We observe data on a set of differentiated products  ${\mathcal G}$  across  ${\mathcal T}$  markets:
  - Consumers and firms' behavior results in outcomes  $p_{jt}$  (prices) and  $s_{jt}$  (market shares)
  - Exogenous observables include characteristics  $x_{it}$ , cost shifters  $w_{it}$
  - Exogenous unobservables are unobserved quality  $\xi_{jt}$  and unobserved cost shifter  $\omega_t$
  - ullet Useful transformations of endogenous variables include demand derivatives  $D_t$  and quantities  $q_t$
- Market equilibrium is determined by demand and supply:

$$s_t = \underbrace{s(p_t, x_t, \xi_t)}_{\mathsf{Demand}}, \qquad p_t = \underbrace{\Delta(p_t, s_t, D_t; \cdot)}_{\mathsf{Markups}} + \underbrace{c(q_t, w_t, \omega_t)}_{\mathsf{Marginal costs}}$$

- ullet Markups can depend on other exogenous variables, e.g., ownership matrix  $\mathcal{H}_t$
- ullet Allow for conduct and cost to depend on firm identity, denote  $\Delta_j, c_j$  scalar valued functions
- General static setting, can be extended to other endogenous non-price variables (not today)

## **Assumptions: DGP and Observables**

- 1. (Equilibrium Selection) There exists a unique equilibrium, or the equilibrium selection rule is such that the same  $p_t$  arises whenever the vector  $(\mathbf{w}_t, \mathbf{x}_t, \omega_t, \xi_t)$  is the same.
- 2. (Separability of Cost) The cost function is separable in unobservable shocks:

$$c(q_t, \mathsf{w}_t, \omega_t) = \bar{c}(q_t, \mathsf{w}_t) + \omega_t.$$

- 3. (Known Demand) The matrix of demand derivatives is known, so that  $D_t$  is observed.
- 4. (Markup Dependence) The markup function  $\Delta$  depends only on endogenous market shares  $s_t$  and the matrix of demand derivatives  $D_t$ .
- Assumption 4 general (includes most standard static oligopoly models) but not without loss
  - e.g., Bertrand/profit weights:  $\Delta = (\mathcal{H}_t \odot D_t)^{-1} s_t$  Cournot:  $\Delta = (\mathcal{H}_t \odot (D_t^{-1})') s_t$
- Demand is known, supply ( $\Delta$  and  $\bar{c}$ ) is not

#### Market Counterfactuals

- ullet Policy changes of interest exogenously change primitive object  $a 
  ightarrow ilde{a}$
- New market outcomes can be computed by solving fixed point:

$$\tilde{\rho}_t = \tilde{\Delta}(\tilde{\rho}_t, \tilde{s}(\tilde{\rho}_t, \tilde{x}_t, \tilde{\xi}_t)) + \tilde{c}(\tilde{q}_t, \tilde{w}_t) + \tilde{\omega}_t$$

• We can express counterfactuals as a map  $F(\tilde{p}, \tilde{s}, \cdot)$  from structural objects and exogenous variables to outcomes of interest, e.g., prices, shares, consumer welfare, etc.

## **Estimating Counterfactuals**

- Evaluating the map F requires knowledge of (counterfactual) primitives, exogenous observables, and unobservables
- Researchers use a combination of data and theory/assumptions
  - We typically estimate functions s and c, and assume  $\Delta$  with a model of conduct
  - Allows us to specify  $\tilde{\xi}, \tilde{\omega}$  and either fix or deterministically change  $\tilde{\imath}, \tilde{c}, \tilde{\Delta}$
- Trade off practicality and data limitations with the dangers of misspecification
  - Estimation of nonparametric models has a curse of dimensionality and requires rich data
  - Misspecification can result in misleading results and subsequent counterfactuals
- Next: a feasible nonparametric model of supply

# Roadmap

Market Equilibria and Counterfactuals

Nonparametric Model of Supply

Estimation and Inference

Monte Carlo Simulations

Empirical Application

Conclusio

# Nonparametric Model of Supply

• Recall DGP, under assumptions 1-4:

$$p_{jt} = \Delta_j(s_t, D_t, \mathcal{H}_t) + c_j(q_t, w_{jt}) + \omega_{jt}$$

• Without further restrictions, as  $q_{jt} = s_{jt}M_t$  for scalar market size  $M_t$ :

$$p_{jt} = h_j(s_t, D_t, w_{jt}; \mathcal{H}_t, M_t) + \omega_{jt}$$

for supply function  $h(\cdot) \equiv \Delta(\cdot) + \bar{c}(\cdot)$ 

#### Remarks

- Notice that formulation of h does not enforce separability of cost and markup
  - Extension I: we can assume a model of conduct, and recover costs flexibly (not today)
  - Extension II: we can assume a cost function, and recover markup functions flexibly (not today)
  - Extension III: we can allow separability with more instruments and variation (not today)
- For counterfactuals, find the prices  $\tilde{p}_t$  that solve:

$$\tilde{p}_t - \hat{h}(s(\tilde{x}_t, \tilde{p}_t), D(\tilde{x}_t, \tilde{p}_t), \tilde{w}_t; \tilde{\mathcal{H}}_t) - \hat{\omega}_t = 0$$

We can define a map F to counterfactuals of interest using estimated objects

#### Which Counterfactuals?

- This nonparametric supply structure enables a wide range of counterfactuals
  - Changes in ownership resulting from mergers, firm/product exit, and product divestment
  - Regulations that alter product characteristics or cost shifters, e.g., fuel economy standards
  - Unit and ad valorem taxes with variation across products and/or markets
- We can measure equilibrium prices, quantities, and changes in consumer welfare (and, in the case of a tax, government revenue and incidence)
- Important limitations of our approach:
  - Cannot measure markups and cost levels separately
  - Cannot alter cost or markups separately
  - (Can be addressed w/ extensions of the method)

#### **Identification of** *h*

- Key identification challenge: the  $s_t$  and  $D_t$  arguments of h are endogenous
- We rely on a moment condition with supply instruments  $z_{jt}$  for identification. Assume:
- 5. (Instrument Exogeneity and Exclusion) The vector of instruments  $z_{jt}$  that satisfies  $\mathbb{E}[\omega_{jt} \mid z_{jt}, w_{jt}] = 0$  contains demand shifter(s)  $x_{jt}^{(e)}$  that are excluded from the vector  $w_{jt}$ .
- 6. (Completeness) For all functions  $B(s_t, D_t, w_t; \mathcal{H}_t)$  with finite expectation, if  $\mathbb{E}[B(s_t, D_t, w_t; \mathcal{H}_t) \mid z_{jt}, w_{jt}] = 0$  almost surely, then  $B(s_t, D_t, w_t) = 0$  almost surely.
- Result: under 1.-6.,  $h_j$  is identified for each j
  - Proof follows arguments akin to Berry and Haile (2014)

## **Instruments and Data Requirements**

- Candidate supply instruments need 2J + J(J-1)/2, many candidates available
  - Intuitively: rival cost shifters move  $s_t$ ; (own and rival) prod. characteristics move  $D_t$
  - Other instruments (e.g., variation in exogenous tax rates) may be available
- Must include demand shifters excluded from cost
  - If not, e.g. w/ logit demand, may just recover inverse demand  $h = s^{-1}$
- Concern: will variation in the data suffice?
- We show simulation evidence later on that standard datasets may have enough variation
- Conduct/cost testing toolkit allows some flexibility in supply with discipline from theory
  - E.g., procedures in Backus, Conlon, Sinkinson (2021), Duarte et al. (2023)

# Roadmap

Market Equilibria and Counterfactual

Nonparametric Model of Supply

Estimation and Inference

Monte Carlo Simulations

Empirical Applicatio

Conclusio

## **Estimation and Inference VMM Inference**

- Classic nonparametric estimators (e.g., series) are well studied for GMM-type setups
  - For nonparametric IV problem, Ai and Chen (2003); Newey and Powell (2023)
  - See reviews by Carrasco et al. (2007); Chen (2007)
- But, curse of dimensionality and instability in classical nonparametric estimation
  - Documented in, e.g., Bennett et al. (2019); Bennett and Kallus (2020)
  - (We make no general claim about the usefulness of classical methods)
- We employ the Variational Method of Moments (VMM)
  - VMM accounts for endogeneity via moment conditions that standard neural networks ignore
  - ullet We develop a method for our nonparametric supply, adapting VMM + DNN
  - Derive uniform prediction bands for prices, shares, consumer surplus, tax revenue
- Method in a nutshell:
  - ullet Deploy two DNNs to learn both optimal instruments and structural supply fcn h

# Why Neural Networks and VMM?

- Why neural network structures?
  - Learn complex structures and achieve faster convergence rates than nonparametric benchmarks
  - See Bauer and Kohler (2019); Schmidt-Hieber (2020); Kurisu et al. (2025)
- Example: Bertrand-Nash with sparse profit weights
  - ullet Prices (below) can be written in a sparse tensor decomp that depends on latent dim  $\ell < J$

$$\omega_j(p,c,\mathcal{H},D)=p_j-c_j-[(\mathcal{H}\odot D')^{-1}s]_j,$$

- Results in Schmidt-Hieber (2020) then implies that DNNs achieve faster convergence rates
- Why the Variational Method of Moments?
  - In fixed-dimensional parametric settings, VMM coincides with OWGMM
  - Inference properties are known; we develop inference for a complex functional of parameters

# Roadmap

Market Equilibria and Counterfactual

Nonparametric Model of Supply

Estimation and Inference

Monte Carlo Simulations

Empirical Applicatio

Conclusio

## Simulations Roadmap

How does our method perform?

- I Does it handle realistic, high-dimensional environments well with moderate sample sizes?
- II But, what's inside the black box?
- III What range of counterfactuals can it handle?

## Simulations Setup I

- Simple parametric simulations to evaluate absolute and relative performance
- For T = 100; 1, 000; 10, 000, market t has either
  - A:  $J_t = 2$ ; 3 with equal probability (small)
  - B: J = 30, owned by 5 firms, as US beer market in Miller and Weinberg (2017)
- Training data is random 80% of the dataset (sampled by market)
- Demand is
  - A: simple logit, scalar unobservable  $\xi_{jt}$ , three observable  $x_{jt}$
  - B: RCNL as in Miller and Weinberg (2017)

## Simulations Setup II: Supply

- We simulate data under two different assumptions on conduct...
  - Bertrand-Nash: Identity ownership matrix
  - *Profit-Weight*: Off-diagonal weights of  $\tau = 0.5$
- ...cost specifications...
  - Linear: Linear costs with two independent cost shifters w<sub>jt</sub>
  - Economies of Scale: Marginal costs are quadratic in quantities
- ...and policy instruments
  - Unit Taxes: Variation in unit taxes across market
  - Ad Valorem Taxes: Variation in ad valorem taxes across markets

# **Comparison of Models**

- We recover  $\omega^B, \omega^M$ , and  $\omega^P$  under Bertrand, Monopoly, and perfect competition
- ullet In the nonparametric supply model, we estimate h and recover  $\omega_{jt}^V$ :

$$p_{jt} = \hat{h}_{j}\left(s_{t}, D_{t}, w_{jt}, \mathcal{H}_{t}\right) + \omega_{jt}^{V}$$

- Supply instruments: own  $x_{jt}$ , rival  $w_{-jt}$ , sum of rival  $x_{jt}$ ,  $w_{jt}$
- We run two types of simulation exercises:
- 1. For A, B: predict in test sample (20% of data) w/ estimated function  $\hat{h}$  and setting  $\omega_{jt}^m=0$
- 2. For A: Simulate counterfactual interventions in mkt t, predict residual  $\omega_{jt}^m$  under model m
- For both exercises, used demand and estimated supply to compute fixed point

## Test Sample Price Prediction Performance in A

Table 1: MSE Across Models, Bertrand DGP (Small Network), environment A

| T     | True Model | Standard Models |         |      | Flexible     | $D_t$ included |
|-------|------------|-----------------|---------|------|--------------|----------------|
|       |            | В               | М       | Р    | •            |                |
| 100   | 0.90       | 0.90            | 578.77  | 9.41 | 1.91<br>1.71 | No<br>Yes      |
| 1,000 | 0.89       | 0.89            | 1022.81 | 8.17 | 2.21<br>1.07 | No<br>Yes      |

ullet Small network has  $3 \times 3$  hidden layer

## Test Sample Price Prediction Performance, Profit-Weight DGP in A

Table 2: MSE Across Models, Profit-Weight DGP (Large Network), environment A

| T      | True Model | Standard Models |       |      | Flexible | $D_t$ included |
|--------|------------|-----------------|-------|------|----------|----------------|
|        |            | В               | М     | Р    |          |                |
| 1 000  | 0.89       | 3.69            | 66.42 | 8.22 | 1.73     | No             |
| 1,000  |            |                 |       |      | 1.74     | Yes            |
| 10,000 | 0.96       | 4.02            | 77.08 | 8.79 | 1.23     | No             |
| 10,000 |            |                 | 77.00 |      | 1.05     | Yes            |

- Large network has  $100 \times 100$  hidden layer
- (When we repeat this exercise 100 times w/ different random draws, initialization of NN, we find tight MSE ranges)

## Test Sample Price Prediction Performance, Profit-Weight DGP in B

Table 3: MSE Across Models, Profit-Weight DGP, environment B

| T      | True Model | Standard Models |      | odels | Flexible ( $\#h = 10$ ) | Flexible ( $\#h = 200$ ) |
|--------|------------|-----------------|------|-------|-------------------------|--------------------------|
|        |            | В               | Μ    | Р     | -                       |                          |
| 1,000  | 1.19       | 3.86            | 3.76 | 3.31  | 2.96                    | 1.58                     |
| 10,000 | 1.07       | 3.96            | 3.86 | 3.41  | 2.74                    | 1.28                     |

• #h is number of layers

## Key Takeaways

- Performance is
  - in A, already reasonable with 100 markets, with 1,000 may be already close to match truth
  - in B, ok with 1,000 markets, probably need closer to 10,000
- Adding derivatives helps, especially in larger samples
- Larger network structure useful to capture complex models of supply, but need more data

# Peeking Inside the Black Box: Pass-through

- Key question: How do we interpret the flexible  $\hat{h}$  we recover?
- ullet A useful object for comparison is the pass-through matrix implied by  $\hat{h}$
- To compute pass-through:
  - Pick median post-merger market by inside share from simulations
  - Increase costs c by 10%, loading increases on the residual  $\omega^V$
  - Solve for equilibrium prices under different models of conduct
  - Compare price before and after cost change, report price change/cost change

# Pass-through Comparison

 Table 4: Simulated Pass-through Matrices

Panel A: Bertrand DGP

Panel B: Profit-Weight DGP

| True Model | Flexible Supply | True Model ( $\kappa=0.5$ ) | Flexible Supply |
|------------|-----------------|-----------------------------|-----------------|
| 0.77       | 0.69 0.12       | 0.35 -0.31                  | 0.44 -0.21      |
|            | 0.12 0.63       | 0.02 0.98                   | 0.01 0.91       |

- Flexible model learns economics of supply side, implies pass-throughs close to the true ones
- (Holds beyond this one market)

#### Market Counterfactuals

- Results thus far show test sample performance
  - Predict for markets out of the training sample, but from same DGP
- Key aspect of counterfactual prediction: (somewhat) out-of-sample
- Caveat when using our method:
  - As with any nonparametric approach, will struggle too far from the support of the data
- Next set of simulations shows "how far is too far"
- ullet (Throughout, T=1,000, env A, flex model estimated with small network structure)

#### What Market Counterfactuals?

- Predict prices after product regulations alter cost shifters simulations
  - E.g., environmental regulations could increase production costs
- Predict market shares after product regulation on product characteristics simulations
  - E.g., bans on menthol in cigarettes or caps on sugar content could change consumption
- Predict welfare changes due to product entry or exit simulations
  - E.g., introduction of a new vehicle or merging firms drop products
- Predict welfare changes due to mergers simulations
  - E.g., mergers in which existing products have new ownership
- Predict revenues after changes in unit and ad valorem taxes simulations
  - Governments could impose taxes on goods

## **Computational Cost**

- Implementation and computation is manageable
- We use the Python package torch for all models
- ullet Model fit takes minutes with T=100, an hour for T=1,000, and  $\sim$ a day for T=10,000

## **Uncertainty in Counterfactuals**

- What about uncertainty in prediction?
- With our VMM estimator, we can compute standard errors for counterfactual outcomes
- Two aspects:
  - Computing standard errors is computationally tractable
  - Uncertainty in prediction seems reasonable in simulations
- Exercise: show market-by-market prediction errors for product exit counterfactuals

#### **Inference on Counterfactual Prices**

Figure 1: Inference on Counterfactual Product Exit Prices



Panel B. Bertrand DGP, T=1,000



• With T = 1,000, tight prediction intervals

### Roadmap

Market Equilibria and Counterfactuals

Nonparametric Model of Supply

Estimation and Inference

Monte Carlo Simulations

Empirical Application

Conclusion

#### **Application to Airline Mergers**

- Good environment to test our method: airline markets in the US have rich data from DB1B
  - Fares, passenger counts, distances, carrier identifiers, etc.
  - Origin and destinations of trips
  - Several large mergers in sample
  - ullet 1mIn+ obs pooling quarterly data 2005-2019, we use  $\sim$ 10,000 pre-merger markets for VMM
  - Previous merger retrospectives (Peters, 2006)
- Estimate simple nested logit demand model
- Goal: predict unilateral price effects of American-US Airways merger in Q4 2013
  - Zoom in on markets that move from  $3 \rightarrow 2$  firms post-merger
  - Treated markets are markets in which both merging firms are present
- (We abstract from many interesting aspects of the industry here...)

## Merger Simulation: Predicted Price Changes Inference

Figure 2: Predicted Price Change Distribution



|          | Price Increases (%) |      |  |
|----------|---------------------|------|--|
| Model    | Median              | Mean |  |
| Bertrand | 1.45                | 6.66 |  |
| VMM      | 2.05                | 2.16 |  |

In theory, our flexible supply model could predict price decreases but it doesn't here

#### Merger Simulation: Comparing Predicted and Observed Post-merger Prices

Figure 3: Merger Simulation Comparison



| Model    | MSE    |
|----------|--------|
| Bertrand | 365.71 |
| VMM      | 66.93  |

## Roadmap

Market Equilibria and Counterfactuals

Nonparametric Model of Supply

Estimation and Inference

Monte Carlo Simulations

Empirical Application

Conclusion

#### Conclusion

- Market counterfactuals crucially depend on the supply model
  - We develop a nonparametric model of supply for a range of counterfactuals
  - Estimation technique uses deep learning + objective function with instruments
  - Inference procedure quantifies uncertainty of a complex functional
- Simulation exercises and an empirical application showcase the method
  - Outperform misspecified models across a host of counterfactuals
  - Merger simulation in the airline industry outperforms the standard merger simulation toolkit

Thank You!

## Variational Method of Moments (VMM) Back

Our model and assumptions imply a moment condition for the structural supply function:

$$\mathbb{E}[p_{jt} - h_j(s_t, D_t, w_t, \mathcal{H}_t) \mid z_t, w_t] = 0$$

• The VMM estimator (Bennett and Kallus, 2023) for our setting is:

$$\hat{\theta}_{N} = \operatorname{argmin}_{\theta \in \Theta} \sup_{f \in \mathcal{F}_{N}} \frac{1}{TJ} \sum_{j,t} f(z_{jt})^{T} \omega_{jt}(\theta) - \frac{1}{4TJ} \sum_{j,t} (f(z_{jt})^{T} \omega_{jt}(\tilde{\theta}_{N}))^{2} - R_{N}(f,h)$$
s.t.  $\omega_{jt}(\theta) = p_{jt} - h_{j}(s_{t}, D_{t}, w_{t}, \mathcal{H}_{t}; \theta,) \quad \forall j \in J$ 

- ullet  $ilde{ heta}_N$  is preliminary estimate
- ullet Both f and h are neural networks, allowing flexible controls of model complexity
- Quadratic term motivated by optimal weighting of making each moment condition zero
- $R_N(\cdot)$  is regularizer that penalizes complexity

• We establish simultaneous confidence intervals for d predicted or counterfactual prices  $\hat{h}$ :

$$\sqrt{N}(\hat{h} - h_0) \overset{d}{\to} N(0, \nabla_{\theta'} h_0 \Omega_0^{-1} \nabla_{\theta'} h_0^T)$$

- Prices are not the only counterfactual of interest in economics research
  - E.g., quantities, consumer surplus, government revenue
- Assuming smoothness of the counterfactual map F in prices, we establish:

$$\sqrt{N}(F(\hat{h}) - F(h_0)) \stackrel{d}{\rightarrow} N(0, \nabla_h F(h_0) \nabla_\theta h_0 \Omega_0^{-1} \nabla_\theta h_0^T \nabla_h F(h_0)^T)$$

- We can quantify uncertainty on other economic objects of interest
  - Inference is possible for product-level, market-level, and aggregate objects

# Inference: Simplest Case (d=1) Back

- Note that  $\nabla_{\theta'} h(\theta_0)$  is  $d \times b$ ; in the simplest case, suppose that d = 1
- Lemma 9 in Bennett and Kallus (2023) states that for any  $\beta \in \mathbb{R}^b$ , we have:

$$\beta^{T}\Omega_{0}^{-1}\beta = -\frac{1}{4}\inf_{\gamma \in \mathbb{R}^{b}}\sup_{f \in \mathcal{F}}\left\{\mathbb{E}[f(Z)^{T}\nabla_{\theta}\omega(X;\theta_{0})\gamma] - \frac{1}{4}\mathbb{E}[(f(Z)^{T}\omega(X;\theta_{0}))^{2}] - 4\gamma^{T}\beta - R_{N}(f,h)\right\}$$
(1)

• Take  $\beta = \nabla_{\theta} h_{\mathsf{x}}(\theta_0)$  and the above solution to the optimization problem becomes:

$$\sigma_{x}^{2} = \nabla_{\theta} h_{x}(\theta_{0}) \Omega_{0}^{-1} \nabla_{\theta} h_{x}(\theta_{0})^{T}$$

- This is the asymptotic variance for  $\sqrt{N}(h_{x}(\hat{\theta}_{N})-h_{x}(\theta_{0}))$ 
  - $\nabla_{\theta} h_{x}(\theta_{0})$  can be difficult to compute analytically
  - Numerical differentiation can be employed (e.g., Hong et al. (2015))
  - ullet Expectations can be replaced by sample means,  $\hat{ heta}_N$  can be used in place of  $heta_0$
  - These together yield a feasible version of Equation (1) which provides an estimator  $\hat{\sigma}_x^2$  for  $\sigma_x^2$

## Inference: Extending to $d \ge 2$ Back

- The approach above cannot obtain a covariance matrix when  $d \ge 2$
- Holm's Step-Down procedure using the estimates for  $\hat{\sigma}_{x_j}^2$  and  $h(\hat{\theta})$  for each j=1,...,d
- The set of critical values  $T_{\alpha}$  is known for significance levels  $rac{lpha}{d+1-k}$  and k=1,...,d
  - We can use a folded normal distribution with t = 1 to account for bias
- For any ordering of x and fixed ordering  $T_{\alpha}$ , we can compute the confidence interval:

$$h_{\mathsf{x}}(\hat{\theta}) \pm \mathsf{N}^{-\frac{1}{2}} \hat{\sigma}_{\mathsf{x}} \mathsf{T}_{\alpha}$$

- We compute this for all permutations of j = 1, ..., d, resulting in d! permutations of x
- This is because we must consider any possible ordering of the p-values of  $x_1, ..., x_d$

- 1. Estimate  $\hat{\sigma}_{x_i}^2$  for  $\sigma_{x_i}^2$  for  $j \in \{1, ..., d\} \equiv J$  by solving the feasible version of Equation (1)
- 2. Fix values  $T_{\alpha} = \{T_{\alpha_k} : k = 1, ..., d\}$  where  $\alpha_k = \frac{\alpha}{d+1-k}$
- 3. For each permutation  $\tilde{J}$  of J:
  - 3.1 Arrange values  $\tilde{x}$  and  $\hat{\sigma}_{\tilde{x}}$  with permuted indices  $\tilde{J}$
  - 3.2 Construct bounds as  $h_{\tilde{x}}(\hat{\theta}) \pm n^{-\frac{1}{2}} \hat{\sigma}_{\tilde{x}} T_{\alpha}$  with fixed  $T_{\alpha}$
- 4. Simultaneous confidence interval as the union of  $2 \times d \times d!$  linear constraints from Step (3)

### **Regulation of Cost Shifters**

- ullet For all counterfactuals, use RMPSE  $\simeq$  avg magnitude of percentage errors
- Implementation: add 1 to  $w_{it}^{(1)} \sim U(0,1)$

Table 5: RMPSE in Prices for Cost Shifter Regulation

| Fitted Model |                   | Panel DGPs  |                  |                     |                          |
|--------------|-------------------|-------------|------------------|---------------------|--------------------------|
| '            | rtted Model       | A. Bertrand | B. Profit-Weight | C. Bertrand (Scale) | D. Profit-Weight (Scale) |
| — В          | Bertrand (Scale)  |             |                  |                     | 5.0                      |
| ···· В       | Bertrand (Const.) |             | 5.1              | 3.5                 | 6.0                      |
| —·- N        | <b>Monopoly</b>   | 10.2        | 5.1              | 11.6                | 6.5                      |
| — P          | Perf Comp         | 5.0         | 6.3              | 5.0                 | 3.8                      |
| F            | lex Supply        | 2.8         | 2.5              | 3.5                 | 3.0                      |

Good absolute and relative performance for a fairly out-of-sample counterfactual

## **Regulation of Cost Shifters**

Figure 4: Regulation of Cost Shifters



## Regulation of Cost Shifters with Economies of Scale

Figure 5: Regulation of Cost Shifters

Panel C. Bertrand DGP, Economies of Scale



Panel D. Profit-Weight DGP, Economies of Scale



## **Regulation of Product Characteristics**

ullet Implementation: add 1 to  $x_{jt}^{(1)} \sim \mathit{U}(0,1)$ 

Table 6: RMPSE in Shares for Regulation of Product Characteristics

| Etha d Mandal            |             |                  | Panel DGPs          |                          |
|--------------------------|-------------|------------------|---------------------|--------------------------|
| Fitted Model             | A. Bertrand | B. Profit-Weight | C. Bertrand (Scale) | D. Profit-Weight (Scale) |
| — · · · Bertrand (Scale) |             |                  |                     | 20.3                     |
| ···· Bertrand (Const.)   |             | 21.0             | 10.2                | 28.3                     |
| —·- Monopoly             | 31.9        | 22.3             | 15.9                | 11.1                     |
| — Perf Comp              | 32.9        | 57.7             | 12.7                | 16.4                     |
| Flex Supply              | 5.0         | 6.6              | 6.6                 | 9.2                      |

## **Regulation of Product Characteristics**

Figure 6: Regulation of Product Characteristics



### Regulation of Product Characteristics with Economies of Scale

Figure 6: Regulation of Product Characteristics

Panel C. Bertrand DGP, Economies of Scale



Panel D. Profit-Weight DGP, Economies of Scale



• Predicting shares seems somewhat harder

#### **Product Exit**

• Implementation: drop a product

Table 7: RMPSE in Consumer Surplus for Product Exit

| Fitted Model            | Panel DGPs  |                  |                     |                          |
|-------------------------|-------------|------------------|---------------------|--------------------------|
| Fitted Model            | A. Bertrand | B. Profit-Weight | C. Bertrand (Scale) | D. Profit-Weight (Scale) |
| — ·- Bertrand (Scale)   |             |                  |                     | 25.0                     |
| ····· Bertrand (Const.) |             | 23.9             | 7.7                 | 23.2                     |
| — · · · Monopoly        | 135.4       | 47.8             | 239.4               | 79.6                     |
| — Perf Comp             | 40.1        | 22.1             | 19.1                | 19.6                     |
| Flex Supply             | 7.8         | 5.0              | 5.4                 | 5.3                      |

Figure 7: Product Exit



#### **Product Exit with Economies of Scale**

Figure 7: Product Exit

Panel C. Bertrand DGP, Economies of Scale



Panel D. Profit-Weight DGP, Econ. of Scale



## Multi-product Merger Simulation

• Implementation: change ownership of one product

Table 8: RMPSE in Consumer Surplus for Mergers

| Fitted Model |                   | Panel DGPs  |                  |                     |                          |
|--------------|-------------------|-------------|------------------|---------------------|--------------------------|
|              | Titted Model      | A. Bertrand | B. Profit-Weight | C. Bertrand (Scale) | D. Profit-Weight (Scale) |
|              | Bertrand (Scale)  |             |                  |                     | 4.8                      |
|              | Bertrand (Const.) |             | 5.0              | 0.8                 | 4.9                      |
|              | Monopoly          | 23.1        | 10.4             | 20.8                | 9.3                      |
|              | Perf Comp         | 23.1        | 10.4             | 20.8                | 9.3                      |
|              | Flex Supply       | 1.5         | 2.4              | 4.9                 | 3.9                      |

## **Multi-product Merger Simulation**

Figure 8: Merger Simulation



#### Multi-product Merger Simulation with Economies of Scale

Figure 9: Merger Simulation

Panel C. Bertrand DGP, Economies of Scale



Panel D. Profit-Weight DGP, Econ. of Scale



#### **Laffer Curves**

• Implementation: augment DGP with unit and ad valorem taxes, generate some variation in tax rate in training data

Table 9: MSE in Government Revenue for Laffer Curves

| Fitted Model     |                    | Panel DGP               | 5                |                       |
|------------------|--------------------|-------------------------|------------------|-----------------------|
| ritted Model     | A. Bertrand (Unit) | B. Profit-Weight (Unit) | C. Bertrand (AV) | D. Profit-Weight (AV) |
| ···· Bertrand    |                    | 0.13                    |                  | 0.27                  |
| — · · · Monopoly | 2.88               | 0.54                    | 16.67            | 2.04                  |
| — Perf Comp      | 0.17               | 0.45                    | 0.96             | 1.34                  |
| Flex Supply      | 0.00               | 0.00                    | 0.03             | 0.05                  |

#### **Laffer Curves for Unit Taxes**

Figure 10: Laffer Curves



• In training data unit tax is U[4,8]

#### **Laffer Curves for Ad Valorem Taxes**

Figure 11: Laffer Curves



• In training data ad valorem tax is U[0, 0.8]



Figure 12: HHI in the Airline Industry



# Observed Price Changes after AA-US Merger (Back)

Figure 13: Price Change Distribution



• Price changes after the AA-US merger in  $3 \rightarrow 2$  markets



Table 10: Demand Estimates

|                                         | $\log(s_{jt})$ - $\log(s_{0t})$ |
|-----------------------------------------|---------------------------------|
| Average Fare                            | -0.0048***                      |
|                                         | (0.0004)                        |
| $\log(S_t)$                             | 0.8356***                       |
|                                         | (0.0133)                        |
| Share Nonstop                           | 0.4030***                       |
|                                         | (0.0282)                        |
| Average Distance (1,000's)              | -0.4881***                      |
|                                         | (0.0498)                        |
| Average Distance <sup>2</sup> (1,000's) | 0.0485***                       |
|                                         | (0.0045)                        |
| log(1 + Num. Fringe)                    | -0.2642***                      |
|                                         | (0.0057)                        |
| $R^2$                                   | 0.94238                         |
| Observations                            | 1,283,472                       |
| Own-price elasticity                    | -5.1652                         |
| Origin-destination fixed effects        | ✓                               |

• Elasticities broadly in line with literature (e.g., Berry and Jia, 2010)

#### Fit: Pooled In-Sample and Out-of-Sample Results (Back)

Figure 14: Model Comparison



| Model    | Sample | MSE     |
|----------|--------|---------|
| Bertrand | All    | 1949.59 |
| VMM      | All    | 1242.95 |
| Bertrand | Train  | 1932.70 |
| VMM      | Train  | 1235.39 |
| Bertrand | Test   | 2016.33 |
| VMM      | Test   | 1272.82 |

ullet Reduction of  $\sim$  40% in passenger-weighted MSE relative to Bertrand

Figure 15: Width of Confidence Intervals

