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® The outcomes of government policy are shaped by the response of markets

® Thus, we seek answers to a wide range of policy questions from empirical models of
demand and supply, used to perform market counterfactuals

® E g, effect of taxes and subsidies, product regulations, competition policy, and more

Credible empirical models of markets require balance between data and structure

Key achievement of 1O approach: enable flexible estimation of demand, rich subst. patterns

® Otherwise, ans. to counterfactual questions driven by assumption/parametric restrictions

What about supply?



Market counterfactuals crucially depend on the supply (i.e., conduct and cost) specification

® Examples:

® Price response to selective tax/tariff depends on strategic complements/substitutes
® Economies of scale/scope matter in response to industry consolidation/mergers

Standard approach imposes strong assumptions on supply

® E.g., Bertrand-Nash oligopoly with constant marginal cost

® Can we provide useful market counterfactuals without restrictive assumptions on supply?



What We Do |

Consider a nonparametric model of supply

Supply fct. that captures markup + costs, depends on endogenous prices and quantities

Reflects notion that prices are set in market equilibrium, but no structure on conduct or cost

Show identification with appropriate supply instruments

® Can leverage both variation in (own and rival) demand shifters, and rival cost shifters



What We Do |l

Estimate model with ML/AI: deep learning + objective function with instruments

Adapt Variational Method of Moments (VMM) (Bennett and Kallus, 2023)

Better performance with high-dimensional data than standard nonpar-1V (e.g., series)

We develop an inference procedure to quantify uncertainty in prediction



What We Do Il

Simulations show that nonparametric model is practical with moderate sample

sizes/variation, outperforms misspecified models

Simulations across many counterfactuals showcase performance

Application: mergers in airline markets

Portable method, computationally manageable



® We build on existing nonparametric approaches to markets for differentiated products

® Nonparametric identification: Berry and Haile (2014)

® Nonparametric approaches to demand: Compiani (2022), Tebaldi, Torgovistky, and Yang
(2023), Brand and Smith (2025), ...

® Flexible approaches to supply: Gandhi and Houde (2020), Otsu and Pesendorfer (2024)

e Complementary to testing/parametric estimation approaches

® Modern testing approaches (e.g., Backus, Conlon, and Sinkinson 2021, Duarte et al. 2023)
also let data shape supply by selecting conduct model within menu
® Trade-off: flexibility vs. data/variation requirements

® Part of broader trend of using ML /Al to enhance structural modeling

® E.g., Kaji, Manresa, and Pouliot (2023)
® We use Bennet and Kallus (2023) for ML/Al approach to nonparametric IV



Market Equilibria and Counterfactuals



A Model of Market Equilibrium

® \We observe data on a set of differentiated products § across 7 markets:
® Consumers and firms' behavior results in outcomes pj; (prices) and sj (market shares)
® Exogenous observables include characteristics x;j, cost shifters wj,
® Exogenous unobservables are unobserved quality £;; and unobserved cost shifter w;
® Useful transformations of endogenous variables include demand derivatives D; and quantities q;

® Market equilibrium is determined by demand and supply:
st = a(pt, xt, &), p: = A(pt, St, Dy; ) + c(qe, we, we)
—_——— ~
Demand Markups Marginal costs

Markups can depend on other exogenous variables, e.g., ownership matrix #€;

Allow for conduct and cost to depend on firm identity, denote A;, ¢; scalar valued functions

General static setting, can be extended to other endogenous non-price variables (not today)
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Assumptions: DGP and Observables

. (Equilibrium Selection) There exists a unique equilibrium, or the equilibrium selection rule

[y

is such that the same p; arises whenever the vector (w¢, x¢, wt, &) is the same.

N

. (Separability of Cost) The cost function is separable in unobservable shocks:

c(qe, we,wt) = €(qe, We) + we.

w

. (Known Demand) The matrix of demand derivatives is known, so that D; is observed.

~

. (Markup Dependence) The markup function A depends only on endogenous market shares
s¢ and the matrix of demand derivatives D;.

® Assumption 4 general (includes most standard static oligopoly models) but not without loss
® e.g., Bertrand/profit weights: A = (#; ® Dt)f1 St Cournot: A = (5‘€t ® (Dt_l)’) St

® Demand is known, supply (A and €) is not



Market Counterfactuals

® Policy changes of interest exogenously change primitive object a — 3
® New market outcomes can be computed by solving fixed point:
Be = A(Pe, 3(Pr. %, &) + E(8e, W) + @

® We can express counterfactuals as a map F(p, 5, ) from structural objects and exogenous
variables to outcomes of interest, e.g., prices, shares, consumer welfare, etc.



Estimating Counterfactuals

Evaluating the map F requires knowledge of (counterfactual) primitives, exogenous

observables, and unobservables

Researchers use a combination of data and theory/assumptions

® We typically estimate functions s and ¢, and assume A with a model of conduct
® Allows us to specify 5,@ and either fix or deterministically change 3, ¢, A

Trade off practicality and data limitations with the dangers of misspecification

® Estimation of nonparametric models has a curse of dimensionality and requires rich data
® Misspecification can result in misleading results and subsequent counterfactuals

Next: a feasible nonparametric model of supply
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Nonparametric Model of Supply
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Nonparametric Model of Supply

® Recall DGP, under assumptions 1-4:

pjit = Aj(st, Dr, #t) + ¢i(qr, wjt) + wjr

® Without further restrictions, as gj; = sj:M; for scalar market size M;:
pjt - hj(5t7 Dt) VV_jtv gft; Mt) + wjt

for supply function h(-) = A(-) + &(+)
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® Notice that formulation of h does not enforce separability of cost and markup

® Extension |: we can assume a model of conduct, and recover costs flexibly (not today)
® Extension II: we can assume a cost function, and recover markup functions flexibly (not today)
® Extension IlI: we can allow separability with more instruments and variation (not today)

® For counterfactuals, find the prices p; that solve:

Pt — h(f’()?tv PNt), D(>~<t7 5t), We; %t) —@r =0

® We can define a map F to counterfactuals of interest using estimated objects
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Which Counterfactuals?

® This nonparametric supply structure enables a wide range of counterfactuals

® Changes in ownership resulting from mergers, firm/product exit, and product divestment
® Regulations that alter product characteristics or cost shifters, e.g., fuel economy standards
® Unit and ad valorem taxes with variation across products and/or markets

® We can measure equilibrium prices, quantities, and changes in consumer welfare (and, in

the case of a tax, government revenue and incidence)

® |mportant limitations of our approach:

® Cannot measure markups and cost levels separately
® Cannot alter cost or markups separately
® (Can be addressed w/ extensions of the method)
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Identification of h

e Key identification challenge: the s; and D; arguments of h are endogenous
® We rely on a moment condition with supply instruments z;; for identification. Assume:

5. (Instrument Exogeneity and Exclusion) The vector of instruments zj; that satisfies

E[wje | zje, wje) = 0 contains demand shifter(s) xj(te) that are excluded from the vector wj;.

6. (Completeness) For all functions B(s;, Dy, wy; #¢) with finite expectation, if
E[B(st, D¢, we; #+) | zje, wjt] = 0 almost surely, then B(s;, D¢, w;) = 0 almost surely.

® Result: under 1.-6., h; is identified for each j
® Proof follows arguments akin to Berry and Haile (2014)
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Instruments and Data Requirements

e Candidate supply instruments - need 2J + J(J — 1)/2, many candidates available

® [ntuitively: rival cost shifters move s;; (own and rival) prod. characteristics move D;
® Other instruments (e.g., variation in exogenous tax rates) may be available

Must include demand shifters excluded from cost

® If not, e.g. w/ logit demand, may just recover inverse demand h = s~}

e Concern: will variation in the data suffice?

® \We show simulation evidence later on that standard datasets may have enough variation

Conduct/cost testing toolkit allows some flexibility in supply with discipline from theory
® E.g., procedures in Backus, Conlon, Sinkinson (2021), Duarte et al. (2023)
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Estimation and Inference
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Estimation and Inference @D @HfEreEne

¢ Classic nonparametric estimators (e.g., series) are well studied for GMM-type setups
® For nonparametric IV problem, Ai and Chen (2003); Newey and Powell (2023)
® See reviews by Carrasco et al. (2007); Chen (2007)

® But, curse of dimensionality and instability in classical nonparametric estimation
® Documented in, e.g., Bennett et al. (2019); Bennett and Kallus (2020)
® (We make no general claim about the usefulness of classical methods)

® We employ the Variational Method of Moments (VMM)

® VMM accounts for endogeneity via moment conditions that standard neural networks ignore
® \We develop a method for our nonparametric supply, adapting VMM + DNN
® Derive uniform prediction bands for prices, shares, consumer surplus, tax revenue

® Method in a nutshell:
® Deploy two DNNs to learn both optimal instruments and structural supply fcn h
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Why Neural Networks and VMM?

® Why neural network structures?

® |earn complex structures and achieve faster convergence rates than nonparametric benchmarks
® See Bauer and Kohler (2019); Schmidt-Hieber (2020); Kurisu et al. (2025)

® Fxample: Bertrand-Nash with sparse profit weights

® Prices (below) can be written in a sparse tensor decomp that depends on latent dim ¢ < J
wj(p, ¢, #,D) = pj — ¢ = [(# © D) 's];,
® Results in Schmidt-Hieber (2020) then implies that DNNs achieve faster convergence rates

® Why the Variational Method of Moments?

® |n fixed-dimensional parametric settings, VMM coincides with OWGMM
® |nference properties are known; we develop inference for a complex functional of parameters

17



Monte Carlo Simulations
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Simulations Roadmap

How does our method perform?

I Does it handle realistic, high-dimensional environments well with moderate sample sizes?
Il But, what's inside the black box?

1l What range of counterfactuals can it handle?

18



Simulations Setup |

® Simple parametric simulations to evaluate absolute and relative performance

e For T =100;1,000; 10,000, market t has either
A: Jp = 2;3 with equal probability (small)
B: J =30, owned by 5 firms, as US beer market in Miller and Weinberg (2017)

® Training data is random 80% of the dataset (sampled by market)

® Demand is

A: simple logit, scalar unobservable &, three observable x;;
B: RCNL as in Miller and Weinberg (2017)

19



Simulations Setup Il: Supply

® \We simulate data under two different assumptions on conduct...
® Bertrand-Nash: |dentity ownership matrix

® Profit-Weight: Off-diagonal weights of 7 = 0.5

® . .cost specifications...
® Linear: Linear costs with two independent cost shifters wj;

® Fconomies of Scale: Marginal costs are quadratic in quantities

® _.and policy instruments
® Unit Taxes: Variation in unit taxes across market

® Ad Valorem Taxes: Variation in ad valorem taxes across markets

20



Comparison of Models

® We recover wB,wM, and w” under Bertrand, Monopoly, and perfect competition

® |n the nonparametric supply model, we estimate h and recover w)t/:
7 1%
pjr = hj (s¢, D¢, wje, #Hy) + Wit

® Supply instruments: own X, rival w_j, sum of rival x;, wj

e We run two types of simulation exercises:

1. For A, B: predict in test sample (20% of data) w/ estimated function h and setting wi =0

2. For A: Simulate counterfactual interventions in mkt ¢, predict residual wJT under model m

® For both exercises, used demand and estimated supply to compute fixed point

21



Test Sample Price Prediction Performance in

Table 1: MSE Across Models, Bertrand DGP (Small Network), environment A

T True Model Standard Models Flexible D; included
B M P
1.91 No
100 0.90 .90 78.77 41
09 > ° 1.71 Yes
2.21
1,000 0.89 0.89 1022.81 8.17 No
1.07 Yes

® Small network has 3 x 3 hidden layer
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Test Sample Price Prediction Performance, Profit-Weight DGP in

Table 2: MSE Across Models, Profit-Weight DGP (Large Network), environment A

T True Model Standard Models Flexible D; included
B M P

1.73 No
1,000 0.89 3.69 66.42 8.22

1.74 Yes

1.23 No
10,000 0.96 4.02 77.08 8.79

1.05 Yes

® | arge network has 100 x 100 hidden layer

® (When we repeat this exercise 100 times w/ different random draws, initialization of NN,
we find tight MSE ranges)
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Test Sample Price Prediction Performance, Profit-Weight DGP in

Table 3: MSE Across Models, Profit-Weight DGP, environment B

Flexible (#h = 200)

T True Model  Standard Models  Flexible (#h = 10)

B M P
1,000 1.19 3.86 3.76 331 2.96 1.58
10,000 1.07 396 386 341 2.74 1.28

® +his number of layers
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Key Takeaways

® Performance is

® in A, already reasonable with 100 markets, with 1,000 may be already close to match truth
® in B, ok with 1,000 markets, probably need closer to 10,000

® Adding derivatives helps, especially in larger samples

® | arger network structure useful to capture complex models of supply, but need more data

25



Peeking Inside the Black Box: Pass-through

e Key question: How do we interpret the flexible h we recover?

e A useful object for comparison is the pass-through matrix implied by h

® To compute pass-through:
® Pick median post-merger market by inside share from simulations
® Increase costs ¢ by 10%, loading increases on the residual w"
® Solve for equilibrium prices under different models of conduct
® Compare price before and after cost change, report price change/cost change

26



Pass-through Comparison

Table 4: Simulated Pass-through Matrices

Panel A: Bertrand DGP Panel B: Profit-Weight DGP
True Model Flexible Supply True Model (k = 0.5) Flexible Supply
0.77 0.17 0.69 0.12 0.35 -0.31 0.44 -0.21
0.10 0.60 0.12 0.63 0.02 0.98 0.01 091

® Flexible model learns economics of supply side, implies pass-throughs close to the true ones
® (Holds beyond this one market)

27



Market Counterfactuals

Results thus far show test sample performance

® Predict for markets out of the training sample, but from same DGP

e Key aspect of counterfactual prediction: (somewhat) out-of-sample

Caveat when using our method:

® As with any nonparametric approach, will struggle too far from the support of the data

Next set of simulations shows “how far is too far”

(Throughout, T = 1,000, env A, flex model estimated with small network structure)

28



What Market Counterfactuals?

® Predict prices after product regulations alter cost shifters

® E.g., environmental regulations could increase production costs

Predict market shares after product regulation on product characteristics

® E.g., bans on menthol in cigarettes or caps on sugar content could change consumption

Predict welfare changes due to product entry or exit

® E g, introduction of a new vehicle or merging firms drop products

Predict welfare changes due to mergers CIIETD

® E.g., mergers in which existing products have new ownership

Predict revenues after changes in unit and ad valorem taxes

® Governments could impose taxes on goods

29



Computational Cost

® |Implementation and computation is manageable
® We use the Python package torch for all models

® Model fit takes minutes with 7 = 100, an hour for T = 1,000, and ~a day for T = 10,000
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Uncertainty in Counterfactuals

What about uncertainty in prediction?

With our VMM estimator, we can compute standard errors for counterfactual outcomes

® Two aspects:

® Computing standard errors is computationally tractable
® Uncertainty in prediction seems reasonable in simulations

Exercise: show market-by-market prediction errors for product exit counterfactuals
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Inference on Counterfactual Prices

Figure 1: Inference on Counterfactual Product Exit Prices
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e With T = 1,000, tight prediction intervals 32



Empirical Application
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Application to Airline Mergers

® Good environment to test our method: airline markets in the US have rich data from DB1B
® Fares, passenger counts, distances, carrier identifiers, etc.
® Origin and destinations of trips
® Several large mergers in sample
® Imlin+ obs pooling quarterly data 2005-2019, we use ~10,000 pre-merger markets for VMM

® Previous merger retrospectives (Peters, 2006)
® Estimate simple nested logit demand model

® Goal: predict unilateral price effects of American-US Airways merger in Q4 2013
® Zoom in on markets that move from 3 — 2 firms post-merger
® Treated markets are markets in which both merging firms are present

® (We abstract from many interesting aspects of the industry here...)

L htergers X Prices X Demana X 7
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Merger Simulation: Predicted Price Changes @i

Figure 2: Predicted Price Change Distribution

Model
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® |n theory, our flexible supply model could predict price decreases but it doesn't here 34



Merger Simulation: Comparing Predicted and Observed Post-merger Prices

Figure 3: Merger Simulation Comparison
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Conclusion
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Conclusion

e Market counterfactuals crucially depend on the supply model

® \We develop a nonparametric model of supply for a range of counterfactuals
® Estimation technique uses deep learning + objective function with instruments
® |nference procedure quantifies uncertainty of a complex functional

® Simulation exercises and an empirical application showcase the method

® Qutperform misspecified models across a host of counterfactuals
® Merger simulation in the airline industry outperforms the standard merger simulation toolkit
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Thank You!
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Variational Method of Moments (VMM) @

® QOur model and assumptions imply a moment condition for the structural supply function:
IE[Pjt - hj(st, Dy, we, #y) | ze,we] =0

® The VMM estimator (Bennett and Kallus, 2023) for our setting is:

A . 1 1 .
On = argmingeesupres, = D f(zie) Twpe(0) — 7 > (F(zie) Twje(On))> — Ru(f, h)
j?t j?t

s.t. Wﬂ-(g) = Pjt — hj(St, Dt, Wi, gft; 07) v_j eJ

® (y is preliminary estimate

® Both f and h are neural networks, allowing flexible controls of model complexity

® Quadratic term motivated by optimal weighting of making each moment condition zero
[ ]

Rn(-) is regularizer that penalizes complexity



Quantifying Uncertainty (GSERiAEsm) @@

We establish simultaneous confidence intervals for d predicted or counterfactual prices h:

VN(h = ho) % N(0, Vg hoQ5 'Varh] )

Prices are not the only counterfactual of interest in economics research

L4 E.g., quantities, consumer surplus, government revenue
® Assuming smoothness of the counterfactual map F in prices, we establish:
VN(F(h) = F(ho)) % N(O, V4F (ho) VoS Vohd VrF(ho)T)

® We can quantify uncertainty on other economic objects of interest

® |nference is possible for product-level, market-level, and aggregate objects



Inference: Simplest Case (d = 1) @&

® Note that Vg h(fp) is d x b; in the simplest case, suppose that d =1

® Lemma 9 in Bennett and Kallus (2023) states that for any 3 € R?, we have:
BT =~ inf sup {E[f(Z)TVQw(X; 60)1] — E[(F(Z)Tw(X: 00))] — 477 B — Ru(f, h)} (1)
YERD fe 4

® Take 8 = Vyhy(6p) and the above solution to the optimization problem becomes:
02 = Vohy(00)Q ' Vahe(60) "

e This is the asymptotic variance for v/N(hy(On) — hx(60))
® Vohy(6p) can be difficult to compute analytically
® Numerical differentiation can be employed (e.g., Hong et al. (2015))
® Expectations can be replaced by sample means, Oy can be used in place of 6y
® These together yield a feasible version of Equation (1) which provides an estimator 42 for o2



Inference: Extending to d > 2 @&

® The approach above cannot obtain a covariance matrix when d > 2

Holm's Step-Down procedure using the estimates for 6)29, and h(QA) for each j=1,....d

The set of critical values T, is known for significance levels ﬁ and k=1,....d

® \We can use a folded normal distribution with t = 1 to account for bias

For any ordering of x and fixed ordering T,, we can compute the confidence interval:
he(f) £ N~26, T,

® \We compute this for all permutations of j = 1, ..., d, resulting in d! permutations of x

This is because we must consider any possible ordering of the p-values of xi, ..., x4



Inference Algorithm @&

1. Estimate 6)29, for 0)29, for j € {1,...,d} = J by solving the feasible version of Equation (1)
2. Fixvalues T, ={T,, : k=1,...,d} where a) = ﬁ

3. For each permutation J of J:

3.1 Arrange values X and 63 with permuted indices J
3.2 Construct bounds as h;(é) + n‘%&; T, with fixed T,

4. Simultaneous confidence interval as the union of 2 x d x d! linear constraints from Step (3)



Regulation of Cost Shifters

® For all counterfactuals, use RMPSE ~ avg magnitude of percentage errors

® |Implementation: add 1 to Wj(tl) ~ U(0,1)

Table 5: RMPSE in Prices for Cost Shifter Regulation

Panel DGPs
Fitted Model
A. Bertrand B. Profit-Weight C. Bertrand (Scale) D. Profit-Weight (Scale)

Bertrand (Scale) -- - -- 5.0
----- Bertrand (Const.) -- 5.1 3.5 6.0
—-= Monopoly 10.2 5.1 11.6 6.5
—— Perf Comp 5.0 6.3 5.0 3.8

Flex Supply 2.8 2.5 3.5 3.0

® Good absolute and relative performance for a fairly out-of-sample counterfactual



Regulation of Cost Shifters

Figure 4: Regulation of Cost Shifters
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Regulation of Cost Shifters with Economies of Scale

Figure 5: Regulation of Cost Shifters

Panel C. Bertrand DGP, Economies of Scale
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Regulation of Product Characteristics

¢ Implementation: add 1 to xj(tl) ~ U(0,1)

Table 6: RMPSE in Shares for Regulation of Product Characteristics

Panel DGPs
Fitted Model
A. Bertrand B. Profit-Weight C. Bertrand (Scale) D. Profit-Weight (Scale)
Bertrand (Scale) - - - 20.3
----- Bertrand (Const.) - 21.0 10.2 28.3
—-= Monopoly 31.9 22.3 15.9 11.1
—— Perf Comp 32.9 57.7 12.7 16.4

Flex Supply 5.0 6.6 6.6 9.2



Regulation of Product Characteristics

Figure 6: Regulation of Product Characteristics
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Regulation of Product Characteristics with Economies of Scale

Figure 6: Regulation of Product Characteristics

Panel C. Bertrand DGP, Economies of Scale Panel D. Profit-Weight DGP, Economies of Scale
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® Predicting shares seems somewhat harder



® |mplementation: drop a product

Table 7: RMPSE in Consumer Surplus for Product Exit

Panel DGPs
Fitted Model
A. Bertrand B. Profit-Weight C. Bertrand (Scale) D. Profit-Weight (Scale)
Bertrand (Scale) -- - - 25.0
----- Bertrand (Const.) -- 23.9 7.7 23.2
—-= Monopoly 135.4 47.8 239.4 79.6
—— Perf Comp 40.1 22.1 19.1 19.6

Flex Supply 7.8 5.0 5.4 5.3



Product Exit

Figure 7: Product Exit
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Product Exit with Economies of Scale

Figure 7: Product Exit

Panel C. Bertrand DGP, Economies of Scale Panel D. Profit-Weight DGP, Econ. of Scale

0.10

-40 -20 0 20 40 60 -40 -30 -20 -10 0 10 20 30
Difference from True Consumer Surplus (%) Difference from True Consumer Surplus (%)



Multi-product Merger Simulation

® |Implementation: change ownership of one product
Table 8: RMPSE in Consumer Surplus for Mergers

Panel DGPs
Fitted Model

A. Bertrand B. Profit-Weight C. Bertrand (Scale) D. Profit-Weight (Scale)
Bertrand (Scale) --

- 4.8
----- Bertrand (Const.) -- 5.0 0.8 4.9
—-= Monopoly 23.1 10.4 20.8 9.3
—— Perf Comp 23.1 10.4 20.8 9.3

Flex Supply 1.5 2.4 4.9 3.9



Multi-product Merger Simulation

Figure 8: Merger Simulation

Panel A. Bertrand DGP Panel B. Profit-Weight DGP
0.35 025
0.30
0.20
0.25
= 2
@ 0.20 G 015
a a
0.15 010
0.10
0.05
0.05
0.00 P s
20  -10 0 10 20 30 40 =20 -15 -10 -5 0 5 10 15 20

Difference from True Consumer Surplus (%) Difference from True Consumer Surplus (%)



Multi-product Merger Simulation with Economies of Scale

Figure 9: Merger Simulation

Panel C. Bertrand DGP, Economies of Scale Panel D. Profit-Weight DGP, Econ. of Scale
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Laffer Curves

® |mplementation: augment DGP with unit and ad valorem taxes, generate some variation in
tax rate in training data

Table 9: MSE in Government Revenue for Laffer Curves

Panel DGPs
Fitted Model
A. Bertrand (Unit) B. Profit-Weight (Unit) C. Bertrand (AV) D. Profit-Weight (AV)
----- Bertrand - 0.13 - 0.27
—-= Monopoly 2.88 0.54 16.67 2.04
——— Perf Comp 0.17 0.45 0.96 1.34

Flex Supply 0.00 0.00 0.03 0.05



Laffer Curves for Unit Taxes

Figure 10: Laffer Curves
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® In training data unit tax is U[4, §]



Laffer Curves for Ad Valorem Taxes

Figure 11: Laffer Curves
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® In training data ad valorem tax is U[0,0.8]



Airline Concentration @&
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Observed Price Changes after AA-US Merger @&

Figure 13: Price Change Distribution
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® Price changes after the AA-US merger in 3 — 2 markets



Demand @&

Table 10: Demand Estimates

log(sje) - log(sot)

Average Fare -0.0048™***
(0.0004)
log(St) 0.8356™**
(0.0133)
Share Nonstop 0.4030***
(0.0282)
Average Distance (1,000's) -0.4881%**
(0.0498)
Average Distance? (1,000's) 0.0485™**
(0.0045)
log(1 + Num. Fringe) -0.2642***
(0.0057)
R? 0.94238
Observations 1,283,472
Own-price elasticity -5.1652
Origin-destination fixed effects v

® Elasticities broadly in line with literature (e.g., Berry and Jia, 2010)



Fit: Pooled In-Sample and Out-of-Sample Results @&

Figure 14: Model Comparison
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® Reduction of ~ 40% in passenger-weighted MSE relative to Bertrand



Merger Simulation: Inference @

Figure 15: Width of Confidence Intervals
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