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Abstract

This paper examines the theoretical implications of policies facilitating cross-platform par-
ticipation in digital markets. We develop a model of duopoly platform competition analyzing
both price-setting (e.g., ride-hailing) and fee-setting (e.g., vacation rentals) mechanisms. We
find that when the platforms are in static competition, reducing switching costs generally ben-
efits consumers; but when platforms collude, the effects can be reversed dramatically. Notably,
policies facilitating seller cross-platform participation may reduce buyer and seller welfare under
collusion.

1 Introduction

The growing economic importance of digital platforms has sparked intense interest among policy-
makers and competition authorities in regulating these markets. A particular focus has been on
reducing barriers that prevent users from accessing and switching between different platforms. This
strategy is widely viewed as pro-competitive, with the potential to reduce market concentration and
improve outcomes for consumers. For instance, the European Commission’s Digital Markets Act
includes provisions to reduce technical, economic and contractual barriers to platform switching and
cross-platform participation.1 Similarly, the UK Competition and Markets Authority (CMA) con-
siders consumers’ ability to freely access multiple platforms as an effective check against incumbent
platforms becoming entrenched in their market positions.2

In this paper, we explore the theoretical implications of policies facilitating cross-platform partic-
ipation on platforms that intermediate transactions between buyers and service providers. Examples
include ride-sharing, vacation rentals, and on-demand services. These platforms, following years of

∗Department of Economics, University of Wisconsin, Madison, WI 53706
1See European Commission. (2022). The Digital Markets Act: Ensuring Fair and Open Digital Markets. The

DMA contains multiple provisions aimed at reducing barriers to platform switching and cross-platform access. These
include prohibitions on technical restrictions that limit switching, requirements for effective data portability, and
mandates for interoperability of certain platform features.

2CMA, Online Platforms and Digital Advertising Market Study, Final Report, 2020.
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rapid growth, now represent a significant portion of economic activity. Our analysis highlights three
factors that characterize these marketplaces and potentially shape the effects of platform switching
policies.

First, price determination varies across different types of platforms. On-demand platforms di-
rectly set prices for buyers while adjusting seller prices (and platform fees) to meet demand. For
instance, BetterHelp establishes a fixed weekly subscription fee for clients, while Uber sets a base
fare for riders, which may be adjusted through surge pricing but remains a key reference point. In
contrast, peer-to-peer platforms with heterogeneous products, such as Airbnb, operate differently.
These platforms don’t set prices directly. They instead determine the commission rate or fee, which
is the fraction of each sale they retain. Market competition then establishes the final prices for buy-
ers and sellers. This distinction in pricing mechanisms significantly influences how these platforms
operate and compete.

Second, the concept of cross-platform participation (and how it relates to the standard notion
of multi-homing) in these markets is nuanced. While users of both on-demand and peer-to-peer
platforms can easily switch between platforms over time, they commit to a single platform for
each specific transaction. For instance, a BetterHealth counselor is exclusively committed to that
platform for the duration of an appointment. Similarly, an Instacart shopper selects one app for each
shopping trip, even if they have multiple delivery apps installed. In the realm of vacation rentals
or car-sharing, property owners or car owners can’t double-book a unit on multiple platforms for
the same time slot. Thus, while agents maintain access to multiple platforms in aggregate, they
single-home for a given transaction.

Third, these markets tend to have a high degree of market concentration. For example, the
combined market share of Uber and Lyft in the U.S. ride-sharing market is virtually 100%,3 while
Airbnb and Vrbo dominate the homeshare market with about 95% combined share.4

To capture economic interactions in these environments, we develop a rich model of duopoly
platform competition incorporating the specific features of these markets. We consider two pricing
mechanisms: one where platforms choose prices for buyers (with seller prices and platform fees
determined by market clearing), and another where firms choose proportional fees for sellers (with
both buyer and seller prices determined through market clearing). In either scenario, the platforms
move first and set fees or prices. Then, buyers and sellers with differentiated tastes for the two
platforms decide first where to transact, and then choose quantities. The choice of platform depends
on the expected surplus from the transaction, but also on a travel cost that each buyer and seller
has to incur.

Since high concentration makes collusion a substantial threat, we consider the possibility that
platforms’ actions could either correspond to a competitive or to a collusive equilibrium. We char-
acterize these equilibria for on-demand and peer-to-peer platforms separately. While the joint

3See https://www.statista.com/statistics/910704/market-share-of-rideshare-companies-united-states/,
accessed October, 2024.

4See https://seekingalpha.com/news/3846023-airbnb-increases-market-share-in-latest-read-from-m-science,
accessed October, 2024.
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profit-maximizing outcomes are the same for these two types of platforms, both the competitive
and any constrained collusive equilibria may differ.

Our model, while not analytically solvable, yields insights through numerical simulations. We
examine a “platform switching counterfactual” by reducing platform travel costs for buyers or sellers,
simulating a regulatory intervention to reduce barriers to platform switching. While travel costs
in our model technically represent horizontal differentiation, we interpret reductions in these costs
as capturing the effect of policies that make it easier for users to choose between platforms on a
transaction-by-transaction basis.5 Focusing on buyer surplus, we find that in a static Nash equilib-
rium, reducing buyer travel costs increases buyer surplus under both pricing models. Reducing seller
travel costs also increases buyer surplus in the price-setting model, but has a small, nonmonotonic
effect in the fee-setting model.

We then explore the possibility of platform collusion using a grim trigger strategy in an infinitely-
repeated game. The sustainability of collusion depends on the trade-off between short-term gains
from undercutting and long-term losses from reverting to the Nash equilibrium; since the economic
environment influences both, its impact on collusive possibilities is complex. Under collusion, we
find that reducing buyer travel costs still increases buyer surplus in the price-setting model, but has
minimal, nonmonotonic effects in the fee-setting model. Notably, reducing seller travel costs in the
price-setting model now dramatically decreases both buyer and seller surplus — a reversal from the
competitive scenario. Similar reversals occur for other welfare measures.

The high concentration observed in many digital platform markets (with duopolies holding 95-
100% market share in ride-sharing and homeshare markets) makes collusion a plausible concern for
regulators. Recent research has also highlighted the potential for algorithmic pricing to facilitate
tacit collusion in digital markets (Calvano, Calzolari, Denicolo, and Pastorello, 2020), further mo-
tivating our analysis of collusive outcomes. Our findings suggest that if platforms are colluding,
policy interventions could have unintended, even opposite, effects compared to competitive mar-
kets: facilitating platform switching, especially for sellers, can sometimes reduce buyer welfare. Our
analysis underscores the theoretical ambiguity of platform switching policies and their dependence
on specific market conditions. Moreover, the model highlights that understanding platform conduct
is crucial to predicting the impact of platform switching policies.

The literature on two-sided markets and network effects has grown substantially in recent decades
(see, e.g., the excellent survey by Jullien, Pavan, and Rysman, 2021). Seminal theoretical contribu-
tions include Rochet and Tirole (2003) and Armstrong (2006), which provide different frameworks
for modeling two-sided markets. Recent studies have built upon these foundations to examine multi-
homing in specific contexts. Within the Rochet and Tirole (2003) framework, Teh, Liu, Wright,
and Zhou (2023) study competition between multiple ride-sharing platforms when both sides of the
market are able to multi-home. Within the Armstrong (2006) framework, Bryan and Gans (2019)
explore how platforms might compete through pricing and wait-time management.

5This differs from classic switching cost models that focus on consumer inertia (Klemperer, 1995), as our frame-
work emphasizes the impact of reducing barriers to platform selection for each individual transaction.
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Our model synthesizes elements from these approaches. We adopt from Rochet and Tirole (2003)
the concept of controlling network effects through per-transaction prices or fees, while incorporating
from Armstrong (2006) the notion of agent preferences through transportation costs. However, our
focus on platform switching as opposed to standard multi-homing diverges from much of the exist-
ing literature. While previous studies often define multi-homing as simultaneous participation on
multiple platforms,6 we consider a more nuanced scenario. In our model, agents can switch between
platforms across transactions but commit to a single platform for each specific transaction. This
approach aligns with the realities of many on-demand and peer-to-peer markets, where simultaneous
use of multiple platforms for a single transaction is often impractical or impossible. This distinction
is crucial for understanding the dynamics of platform competition in these rapidly evolving markets.

Our work is related to papers that have proposed frameworks for understanding the incentives
to collude within two-sided markets. Jullien and Sand-Zantman (2021) provide a comprehensive
overview of this literature; more recently, Peitz and Samkharadze (2022) study collusion among
non-differentiated platforms. Notable studies in this area include Ruhmer (2010) and Lefouili and
Pinho (2020), who examine collusion’s effects within Armstrong’s model, and Dewenter, Haucap,
and Wenzel (2011), who investigate collusion in newspaper markets with multi-homing readers
and advertisers. These studies consistently find that full collusion maximizes platform profits,
but the welfare implications are ambiguous and depend on network externalities. Collusion can
sometimes improve welfare for certain market participants, particularly when strong network effects
are present. Our approach differs by focusing on how horizontal differentiation or platform switching
(as measured by travel costs) affects market outcomes under both competition and collusion. We
demonstrate that in some cases, collusion can reverse the impact of reduced travel costs, potentially
undermining the intended effects of regulatory interventions designed to enhance competition by
encouraging platform switching and cross-platform participation.

Finally, the paper also relates to the broader literature showing the ambiguous effects of product
differentiation on collusion (e.g., Deneckere, 1983; Chang, 1991; Rothschild, 1992; Häckner, 1994;
Powers, 1998; Thomadsen and Rhee, 2007). Previous work has established that product differ-
entiation creates a trade-off for collusion, which is also present in our results: less differentiation
intensifies competition under Nash reversion but also increases the gains from collusion. However,
our platform setting shows how this trade-off manifests uniquely in two-sided markets, where the
relationship between differentiation and collusion hinges on the platform’s pricing mechanism. This
distinction is absent in traditional differentiated product markets and highlights the importance of
understanding specific platform business models when evaluating policy interventions.

6An exception is the setup considered in Athey, Calvano, and Gans (2018), where consumers “multi-home” by
allocating a fixed budget of attention across two publishers.
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2 Model

2.1 Overview – Players and Timing

We now introduce the basic structure common to both the price-setting and the fee-setting game.
There is a measure of buyers normalized to 1, a measure M of sellers, and two platforms where
buyers and sellers can trade with each other. Both buyers and sellers are distributed uniformly
along a Hotelling line, with one platform at each end. The timing of the game is as follows:

1. First, the two platforms each simultaneously set either their buyer price or platform fee,
explained further below.

2. Second, each buyer and each seller chooses a platform, based on the two platforms’ policies
and correct expectations about what the other buyers and sellers will do.

3. Third, trade occurs at each platform between the buyers and sellers who have chosen that
platform.

2.2 Buyer and Seller Payoffs

Each buyer or seller can only trade on one platform. Once they arrive at a platform, buyers have a
linear demand function

Q = 1− θPD

where PD is the price they face at that platform, and therefore earn buyer surplus of u = 1
2θ (1 −

θPD)2 . Sellers have a linear supply function

Q = γPS

where PS is the price they receive, and therefore earn producer surplus of 1
2γ(PS)2. In equilibrium,

PD > PS , since the platforms will choose policies that earn positive profits.
In addition to this surplus, both buyers and sellers have horizontally differentiated tastes for the

two platforms, modeled as “travel costs”. The buyer at location x ∈ [0, 1] faces “travel cost” tx from
choosing the first platform, and t(1−x) from choosing the second platform, and additionally earns a
constant utility U from either platform which is large enough to ensure that in equilibrium, all buyers
are served. Thus, the buyer at location x earns u1− tx+U from platform 1, and u2− t(1− x) +U

from platform 2, where ui = 1
2θ (1− θPDi )2 is the gross buyer surplus they anticipate at platform i.

Similarly, the seller at location x ∈ [0, 1] faces travel cost Tx from choosing the first platform,
and T (1 − x) from choosing the second, and additionally earns a constant utility U ′ from either
which is sufficiently large so that in equilibrium, all sellers sell. The seller at location x therefore
earns 1

2γ(PS1 )2 − Tx + U ′ from platform 1, or 1
2γ(PS2 )2 − T (1 − x) + U ′ from platform 2, if they

expect to face prices PS1 and PS2 .
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2.3 Platform Payoffs and Actions

The platforms both seek to maximize their revenue, which is the volume of trade occurring at
platform i times the difference between PDi (the price paid by buyers) and PSi (the price paid to
sellers). Platforms compete with each other in one of two ways.

In one version of the model, platforms directly set the price faced by buyers, PDi , and implicitly
guarantee they will pay sellers enough to fill the buyer demand at their platform. This seems like a
plausible model for settings where the product is fairly homogeneous and the price facing buyers is
fairly focal, such as the competition between Uber and Lyft. While prices are sometimes determined
by “market clearing” due to surge pricing, if Uber or Lyft changed the “baseline price” paid for rides,
this would be a clear and noticeable change.

In the second version of the model, platforms instead set their fee level - the fraction of buyer
payments that the platform keeps, rather than passing on to the sellers. That is, each platform sets
a fee level fi. Then, given the buyers and sellers who come to the platform, prices are determined
by market-clearing and the constraint that PSi = (1− fi)P

D
i . This seems like a better assumption

when products are heterogeneous, and the platform therefore can’t control prices effectively, such
as the competition between AirBnB and Vrbo: Vrbo could try to undercut AirBnB by announcing
lower fees.

As noted above, once the two platforms set their “policies” (either buyer prices or fee levels),
buyers and sellers form beliefs about market conditions at each platform and choose the one they
anticipate higher surplus from; given the traders who arrive at each platform, prices are determined,
trade occurs, and payoffs are realized.

3 Analyzing The Price-Setting Model

First, we consider the on-demand platforms model, in which the platforms directly set the buyer-
facing prices PDi , then let the prices paid to sellers PSi adjust to clear the market. As usual, we
solve the game by backward induction.

3.1 Stage 3: Price Determination and Trade

Suppose buyer prices PD1 and PD2 were set in the first stage, and measures Ni ≤ 1 of buyers and
Mi ≤M of sellers have chosen platform i. The buyer price PDi is already fixed; the seller price PSi
is determined by market clearing, which requires the supply at platform i to match the demand, or

Mi(γP
S
i ) = Ni(1− θP

D
i ) → PSi =

Ni

γMi
(1− θPDi ).
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Buyer surplus at platform i (gross of travel costs) is ui = 1
2θ (1 − θPD)2, producer surplus is πi =

1
2γ(PSi )2 = γ

2 ( Ni
γMi

PDi )2, and the platform’s revenue is

Πi = Qi(P
D
i − P

S
i ) = Ni(1− θP

D
i )

(
PDi −

Ni

γMi
(1− θPDi )

)
.

3.2 Stage 2: Buyers and Sellers Choose a Platform

Next, we consider the second stage: buyers’ and sellers’ choice of a platform. Since buyer prices PDi
are set directly in stage one, buyers know exactly what surplus they can achieve at each platform,
and choose accordingly: the buyer at location x ∈ [0, 1] prefers platform 1 to platform 2 if

1

2θ
(1− θPD2 )2 − t(1− x) + U ≤ 1

2θ
(1− θPD1 )2 − tx+ U

x ≤ 1

2
+

1

4tθ

[
(1− θPD1 )2 − (1− θPD2 )2

]
.

Thus, assuming both platforms price to attract a positive measure of buyers (as they will in
equilibrium), prices PD1 and PD2 will lead to a measure

α =
1

2
+

1

4tθ

[
(1− θPD1 )2 − (1− θPD2 )2

]
of buyers choosing platform 1, and 1− α buyers choosing platform 2.7

Now, let β be the fraction of sellers choosing platform 1, so that a measure βM of sellers sell
to the α buyers there. Market clearing requires PS1 = N1

γM1
(1− θPD1 ) = α

βγM (1− θPD1 ), and sellers

who choose platform 1 will therefore expect producer surplus of γ2
(

α
βγM (1− θPD1 )

)2
.

Similarly, sellers choosing platform 2 will expect producer surplus of γ
2

(
1−α

(1−β)γM (1− θPD2 )
)2

.
As a result, sellers will choose platform 1 when

γ

2

(
1− α

(1− β)γM
(1− θPD2 )

)2

− T (1− x) + U ′ ≤ γ

2

(
α

βγM
(1− θPD1 )

)2

− Tx+ U ′.

Simplifying, this is when

x ≤ 1

2
+

γ

4T

[(
α

βγM
(1− θPD1 )

)2

−
(

1− α
(1− β)γM

(1− θPD2 )

)2
]
.

Assuming an interior solution, the fraction β of sellers choosing platform 1 will therefore be the
7If (1− θPD1 )

2 − (1− θPD2 )
2 ≥ 2tθ, all buyers prefer platform 1 and α = 1; if (1− θPD1 )

2 − (1− θPD2 )
2 ≤ −2tθ,

all buyers prefer platform 2 and α = 0.
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unique solution to

β =
1

2
+

γ

4T

[(
α

βγM
(1− θPD1 )

)2

−
(

1− α
(1− β)γM

(1− θPD2 )

)2
]

with α as defined above. Assuming 1− θPD1 and 1− θPD2 are both strictly positive and α ∈ (0, 1),
the right-hand side of this last expression goes to +∞ as β → 0 and −∞ as β → 1, so a solution
exists; the right-hand side is decreasing in β, so the solution is unique.

Thus, for PD1 and PD2 both less than 1
θ and such that (1 − θPD1 )2 − (1 − θPD2 )2 ∈ (−2tθ, 2tθ),

a choice of buyer prices leads to a unique determination of how many buyers and how many sellers
choose each platform (which leads to a unique determination of seller price), so platform payoffs are
well-defined as a function of (PD1 , P

D
2 ).8

3.3 Stage 1: Platforms Set Buyer Prices

In the first stage, the platforms choose buyer prices PDi , knowing the market shares and eventual
seller prices they will lead to.

Symmetric Nash Equilibrium

Consider platform 1’s problem of choosing PD1 to maximize

Π1 = Q1(P
D
1 − P

S
1 )

where Q1 is the volume of trade at platform 1. We can write Q1 as the measure of buyers who show
up, α, times the demand of each one, which is 1− θPD1 . And from market clearing above, we know
PS1 = α(1− θPD1 ). So we can rewrite Π1 as

Π1 = α(1− θPD1 )

(
PD1 −

α

βγM
(1− θPD1 )

)
where α and β are functions of PD1 and PD2 as given above. The payoffs to platform 2 are similarly

Π2 = (1− α)(1− θPD2 )

(
PD2 −

1− α
(1− β)γM

(1− θPD2 )

)
.

Since α and β are fairly complex (and we don’t have a closed-form expression for β), we can’t
simply plug them into Π1 and Π2 and fully analyze the first-stage game. However, we can find a
necessary condition for symmetric Nash equilibrium, as follows: we take the derivative of Πi with
respect to PDi , including the derivatives of α and β, and set it equal to zero at PD1 = PD2 = Pn

(which also implies α = β = 1
2). This leads to the following condition:

8A choice of PDi ≥ 1
θ
will never be optimal, as it induces zero trade and therefore zero revenue. Choices of PDi

such that α = 0 or α = 1 never occur in equilibrium, but will need to be accounted for as possible deviations by one
platform.
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Proposition 1. If PD1 = PD2 = Pn is a symmetric Nash equilibrium of the price-setting game, then
Pn must satisfy

tγMθPn = −γMPn(1− θPn)2 + (1− θPn)3 + tγM(1− θPn) + 2tθ(1− θPn) (1)

+
TγM2 − tθ

TγM2 + 2(1− θPn)2
(1− θPn)3

Note (1) is a fifth-order polynomial in Pn, and quite tractable computationally. Also note that
a solution always exists. At Pn = 0, the left-hand side is 0 and the right-hand side is easily shown
to be positive; at Pn = 1

θ , the right-hand side is 0 and the left-hand side is positive; both sides are
continuous in Pn, so they must cross. In our numerical explorations across a wide range of parameter
values, we consistently find a unique solution to equation (1). While we cannot provide a general
analytical proof of uniqueness, our simulation approach involves verifying that the identified critical
point is indeed a global maximizer of the profit function by checking that no profitable deviations
exist. Finally, we should re-emphasize that (1) is a necessary condition, but not a sufficient one,
for PD1 = PD2 = Pn to be a Nash equilibrium. That said, once we find the solution to (1), we can
verify numerically that PD1 = Pn is indeed a global best-response to PD2 = Pn.

Collusive Profits

Aside from the competitive price level, we also consider the outcome if the two platforms were to
collude. First, suppose the two platforms colluded by setting identical prices PD1 = PD2 = Pc at the
joint-profit-maximizing level.

Proposition 2. In the price-setting model, joint symmetric profits are maximized at

Pc =
2θ + γM

2θ(θ + γM)

which gives each firm collusive profits of

Πc =
γM

8θ(θ + γM)

To see when this maximal level of profits can be sustained in a repeated game setting via a
grim-trigger (Nash reversion) strategy, we need to check whether

1

1− δ
Πi(Pc, Pc) ≥ max

P
Πi(P, Pc) +

δ

1− δ
Πi(Pn, Pn)

where Pc refers to the collusive price 2θ+γM
2θ(θ+γM) and Pn refers to the Nash price. Rearranging, Πc

can be sustained whenever

δ ≥ δ∗ ≡ maxP Πi(P, Pc)−Πi(Pc, Pc)

maxP Πi(P, Pc)−Πi(Pn, Pn)
.
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For δ < δ∗, we can also calculate the highest level of collusive profits sustainable, as the solution to

max
P̃

Πi(P̃ , P̃ ) subject to δ ≥ maxP Πi(P, P̃ )−Πi(P̃ , P̃ )

maxP Πi(P, P̃ )−Πi(Pn, Pn)
.

This latter problem doesn’t admit a closed-form solution for δ < δ∗, but can easily be solved numer-
ically, allowing us to find the maximal prices that can be sustained in a grim-trigger equilibrium.

4 Analyzing The Fee-Setting Model

Next, we consider the peer-to-peer model of platform competition — firms set fee levels fi, the
fraction of buyer revenue retained by the platform, and both the buyer price PDi and the seller price
PSi at each platform are determined by market-clearing and the restriction that PSi = (1− fi)P

D
i .

Again, we work backwards from the end.

4.1 Stage 3: Price Determination and Trade

Suppose that platform i has set fee level fi, and that measures Ni of buyers and Mi of sellers have
chosen platform i. Market clearing now requires

Ni(1− θP
D
i ) = MiγP

S
i = Miγ(1− fi)P

D
i → PDi =

Ni

Niθ +Miγ(1− fi)

and with it PSi = Ni(1−fi)
Niθ+Miγ(1−fi)

. Gross buyer surplus is 1
2θ

(
1− Niθ

Niθ+Miγ(1−fi)

)2
(before travel costs

and U); gross producer surplus is 1
2γ
(

Ni(1−fi)
Niθ+Miγ(1−fi)

)2
; and the platform’s revenue is

Πi = fiQiP
D
i = fi(MiγP

S
i )PDi = fiMiγ

Ni(1− fi)
Niθ +Miγ(1− fi)

Ni

Niθ +Miγ(1− fi)
.

4.2 Stage 2: Buyers and Sellers Choose Platforms

Once the two platforms have chosen f1 and f2, the buyers and sellers each select the platform that
will give them greater surplus (given correct beliefs about what the rest of the market is doing),
determining Ni and Mi. This time, however, both PDi and PSi depend on beliefs about how other
buyers and sellers are choosing, and so the determination of α and β is a bit more complicated.

If a measure N1 = α of buyers and M1 = βM of sellers choose platform 1 and the rest choose
platform 2, then a buyer at location x prefers platform 1 if

1

2θ

(
1− (1− α)θ

(1− α)θ + (1− β)Mγ(1− f2)

)2

− t(1− x) + U

≤ 1

2θ

(
1− αθ

αθ + βMγ(1− f1)

)2

− tx+ U
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or equivalently

x ≤ 1

2
+

1

4tθ

[(
βMγ(1− f1)

αθ + βMγ(1− f1)

)2

−
(

(1− β)Mγ(1− f2)
(1− α)θ + (1− β)Mγ(1− f2)

)2
]
.

Similarly, a seller at location x prefers platform 1 if

γ

2

(
(1− α)(1− f2)

(1− α)θ + (1− β)Mγ(1− f2)

)2

− T (1− x) + U ′ ≤ γ

2

(
α(1− f1)

αθ + βMγ(1− f1)

)2

− Tx+ U ′

or

x ≤ 1

2
+

γ

4T

[(
α(1− f1)

αθ + βMγ(1− f1)

)2

−
(

(1− α)(1− f2)
(1− α)θ + (1− β)Mγ(1− f2)

)2
]
.

As a result, given (f1, f2), interior market shares (α, β) ∈ (0, 1) are an equilibrium if and only if
they satisfy the system

α =
1

2
+

1

4tθ

[(
βMγ(1− f1)

αθ + βMγ(1− f1)

)2

−
(

(1− β)Mγ(1− f2)
(1− α)θ + (1− β)Mγ(1− f2)

)2
]

β =
1

2
+

γ

4T

[(
α(1− f1)

αθ + βMγ(1− f1)

)2

−
(

(1− α)(1− f2)
(1− α)θ + (1− β)Mγ(1− f2)

)2
]
.

Once again, without a formal proof, we can observe numerically that given (f1, f2), this system
typically has a unique interior solution if it has one at all.9 When there is an interior solution - an
equilibrium where both platforms are “active” - we assume that it is the equilibrium played. When
there is no interior solution (which requires f1 6= f2), we assume that the equilibrium played is the
unique one where all sellers are at the cheaper platform.10

4.3 Stage 1: Platforms Set Fee Levels

Symmetric Nash Equilibrium

Once again, we can find a computationally tractable necessary condition for symmetric equilibrium:

Proposition 3. If f1 = f2 = f is a symmetric Nash equilibrium of the fee-setting game, then f

must satisfy

0 =
1

f
− 1

1− f︸ ︷︷ ︸
I

−
[

4Mγ(1− f)

θ +Mγ(1− f)

2(θ −Mγ(1− f))

θ +Mγ(1− f)

]
Q−1

[
M2γ2(1− f)

θγ(1− f)

]
︸ ︷︷ ︸

II

+
2Mγ

θ +Mγ(1− f)︸ ︷︷ ︸
III

, (2)

9For f1 and f2 too far from each other, there are only corner solutions – equilibria where all sellers are at the
same platform.

10Depending on the value of t, some buyers may still choose the “empty” platform.
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where the matrix

Q =

[
4M2γ2(1− f)2 + 2t(θ +Mγ(1− f))3 −4M2γ2(1− f)2

−4Mγ2(1− f)3 4Mγ2(1− f)3 + 2T (θ +Mγ(1− f))3

]

is invertible.

This is a necessary but not sufficient condition for f1 = f2 = f to be a Nash equilibrium. For
any f satisfying this expression, we can verify numerically that it is indeed an equilibrium.

Equation (2) also implies that a solution always exists. As f → 0, I goes to infinity while all

other terms remain bounded, so the expression is strictly positive. As f → 1, Q →

[
2tθ3 0

0 2Tθ3

]

and

[
M2γ2(1− f)

θγ(1− f)

]
→

[
0

0

]
, so II vanishes. Since I goes to −∞ and III is bounded, the whole

expression is strictly negative for f close to 1. By continuity, it crosses zero somewhere.

Collusion

Although it’s not immediately obvious, two platforms colluding in the fee-setting game would get
the same outcome as two platforms colluding in the price-setting game:

Proposition 4. In the fee-setting model, joint symmetric profits are maximized at a fee level of

f =
θ +Mγ

2θ +Mγ

which leads to the same prices and the same collusive profits

ΠC =
γM

8θ(θ + γM)

as in the price-setting model.

While the collusive profit level Πc is the same across the two models, δ∗ will be different, since
both the one-period deviation profits and the Nash profits are different. For δ < δ∗, maximal collu-
sive profits, defined by the same constrained optimization problem as before, will be different as well.

5 The Effect of Promoting Platform Switching: Results and Dis-
cussion

For our numerical simulations, we employ a computational approach that (1) solves for equilibrium
prices/fees under both Nash competition and collusion for a given set of parameters, (2) verifies
that these solutions satisfy first-order conditions, and (3) confirms that no profitable deviations exist
by checking profits over the full strategy space. Our benchmark parameterization uses M = 0.5,
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θ = 0.1, and γ = 1, though as demonstrated in Section 5.4, our key insights hold across a wide
range of parameter values.

5.1 Comparative Statics of Buyer Surplus – Nash Equilibrium

The results in Propositions 1 and 3 allow us, for a given set of primitives, to numerically calculate
the prices or fee levels set by the two platforms in symmetric Nash equilibrium, and from those,
equilibrium payoffs. This allows us to see, at least in particular cases, how equilibrium payoffs
change with environmental parameters.

To foster competition between platforms, regulators have considered policies that promote users’
ability to switch between and access multiple platforms. In our model, such an intervention can
be represented as a reduction in travel costs for buyers or sellers. For either buyers or sellers, as
their travel cost approaches 0, switching between platforms becomes easier and they increasingly
gravitate to whichever platform offers them a more profitable environment in equilibrium. We first
analyze how this reduction in travel costs affects buyer surplus — a key regulatory concern — before
extending the analysis to seller surplus, platform profits, and total welfare.

Figure 1 shows how equilibrium buyer surplus responds to changes in travel cost, for a particular
parameterization of our two models. In Panel A, T = 0.2, and t varies from 0 to 1; in Panel B,
t = 0.2, and T varies from 0 to 1. In both panels, the solid curve shows buyer surplus in the
price-setting model, and the dashed curve shows buyer surplus in the fee-setting model.

Figure 1: Nash Equilibrium Buyer Surplus as Travel Costs Change

Panel A. Panel B.

The figure plots Nash equilibrium buyer surplus for both the price- and fee-setting models. Panel A fixes seller travel
costs at T = 0.2 and varies buyer travel costs t. Panel B fixes buyer travel costs at t = 0.2 and varies seller travel
costs T . Both use parameter values M = 0.5, θ = 0.1, and γ = 1.

Panel A shows that buyer surplus rises as buyers’ travel cost falls in both the price- and fee-setting
models. This happens for two reasons. First, travel costs are mechanically subtracted from buyers’
surplus. Second, by making buyers more willing to switch platforms for a better “deal,” reducing t
leads to lower equilibrium prices or fees set by the platform under both models. Therefore greater
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surplus on each platform can be divided between the buyers and sellers. In symmetric equilibrium,
the average buyer incurs travel costs of 1

4 t; since equilibrium buyer surplus under both models rises
from about 1.2 to about 1.7 as t drops from 1 to 0, the two effects are roughly the same size.

Panel B shows that in the price-setting model, buyer surplus also rises as seller travel costs fall.
The two panels have different scales on the y axis; the effect is not nearly as strong as the effect
of buyers’ own travel costs, due to the lack of a direct effect; in this case, the rise in buyer surplus
comes only from the platforms’ reduction in prices as T falls. As T falls, buyers remain equally
responsive to a change in price, but sellers become more responsive to a change in the location of
buyers; this increases the benefit to a platform of lowering its buyer-facing price as T falls.

However, buyer surplus changes very little in response to a drop in seller travel costs under the
fee-setting model, first rising as T falls, but then falling as T gets even smaller. This follows the
pattern in equilibrium fee levels: platform fee levels respond very little to changes in seller travel
costs, first falling very slowly with a decrease in T but then rising as T falls once T is very low.
Since platform fees scale with buyer prices, platforms can tolerate losing some sellers - the resulting
higher market-clearing prices offset the reduced transaction volume, meaning a smaller market size
(T ) may not substantially lower equilibrium fees. This non-monotonicity in the fee-setting model
stems from the interplay between two opposing forces. As seller travel costs decrease, sellers become
more responsive to differences between platforms, which initially incentivizes platforms to compete
more aggressively on fees, benefiting buyers. However, when seller travel costs become very low,
platforms can more easily attract sellers even with higher fees, allowing them to extract more surplus
from the value chain as a whole, potentially harming buyers.

The upshot, then, is that if the two platforms play the static Nash equilibrium, buyers benefit
from policies that make it easier for them to switch platforms under either model; and also benefit
from policies that make it easier for sellers to switch platforms under the price-setting model.

5.2 Comparative Statics of Buyer Surplus – Collusive Platforms

The results in Propositions 2 and 4 establish the maximal profits platforms could achieve in ei-
ther model at the joint-profit-maximizing price or fee level. For sufficiently high discount rates δ,
these profits are sustainable in the infinitely repeated game through threats of Nash reversion after
deviations. When δ falls below a critical value, while maximum profits are no longer sustainable,
we can calculate the highest achievable profits in a grim-trigger equilibrium by analyzing three
factors: collusive profits at a given fee level, profits from the optimal deviation, and Nash profits.
This allows us to determine buyer surplus and welfare measures at the corresponding price or fee
levels, addressing a key question: if platforms are colluding, will regulatory interventions have their
intended effect, or might they work differently—possibly even opposite to regulators’ intentions?

The sustainable collusive prices or fees respond to market parameters in complex ways be-
cause sustainability depends on both the short-term gains from deviation and the severity of Nash
punishment. Since these components can respond differently to changes in market primitives, the
comparative statistics become difficult to predict, but can be studied in simulations. Figure 2 shows
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buyer surplus, for the same environment as considered above, under the added assumption that the
platforms have discount factor δ = 0.5 and collude to the maximum extent possible in a grim-trigger
equilibrium.

Panel A shows differing effects of reduced buyer travel costs under collusion. In the price-setting
model, buyer surplus rises consistently as t falls. However, in the fee-setting model, buyer surplus
first increases but then decreases as t approaches zero. This non-monotonic pattern emerges because
falling travel costs reduce Nash profits while increasing deviation profits, leading to relatively stable
but non-monotonic maximum collusive prices.

Figure 2: Buyer Surplus under Platform Collusion as Travel Costs Change

Panel A. Panel B.

The figure plots buyer surplus for both the price- and fee-setting models under the assumption of maximal sustainable
collusion with δ = 0.5. Panel A fixes seller travel costs at T = 0.2 and varies buyer travel costs t. Panel B fixes buyer
travel costs at t = 0.2 and varies seller travel costs T . Both use M = 0.5, θ = 0.1, and γ = 1.

Panel B reveals contrasting effects of reduced seller travel costs (T ). Under fee-setting, buyer
surplus increases monotonically as T falls. However, under price-setting, buyer surplus declines
sharply. This decline occurs because lower T reduces Nash prices and profits, making collusion
more sustainable through harsher punishment for deviation. Consequently, platforms can maintain
higher collusive prices. This suggests that policies facilitating seller platform switching may benefit
buyers when platforms compete but harm them when platforms collude, particularly in price-setting
scenarios.

5.3 Other Comparative Statics

We can similarly look at comparative statics with respect to the other parties’ payoffs. We focus
on the price-setting model. As discussed above, when platforms compete (static Nash), platform
profits decrease as seller travel costs decrease, as “closer competition” between platforms leads to
lower platform prices. However, when the platforms are colluding, the same reduction in seller
travel costs now increases platform profits, by increasing the price they can sustain in a collusive
equilibrium. (While the payoff from deviating from the collusive price increases, the decrease in
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Nash profits offsets this, and a higher price can be sustained.) These two results are shown in Panel
A of Figure 3.

Panel B shows the effect of seller travel costs on seller surplus. When the platforms are compet-
ing (static Nash), a reduction in T increases seller surplus, as we would expect. But when platforms
are colluding, the reduction in T now reduces seller surplus: the higher price sustained by platforms
in the collusive equilibrium reduces volumes enough to hurt sellers even more than they benefit
from the direct reduction in their travel costs. Thus, when the platforms are actually colluding, a
well-intentioned policy intervention that reduces barriers to sellers platform switching can actually
benefit the platforms, at the expense of both buyers and sellers – exactly the opposite of the intended
effect.

Figure 3: Other Effects of Seller Travel Costs in Price-Setting Model

Panel A. Platform Profits Panel B. Seller Surplus

The figure compares platform profits and seller surplus under Nash equilibrium and maximal sustainable collusion
with δ = 0.5. Both panels fix buyer travel costs at t = 0.2 and vary seller travel costs T ; both use M = 0.5, θ = 0.1,
and γ = 1.

5.4 Beyond One Example

Finally, we argue that while not generic, the reversals highlighted above are not overly cherry-picked.
To support this claim, we consider a wide range of different parametrizations of both models under
collusion, varying the ratio of buyers to sellers, buyers’ and sellers’ travel costs, and the slope
parameters on each buyer’s demand and each seller’s supply. For each level of buyer and seller
travel costs, we consider the fraction of parametrizations under which buyer surplus falls when
buyers’ and sellers’ travel costs are reduced slightly. Figure 4 presents these results graphically as a
“heat map”: Panel A shows the results for the price-setting model, and Panel B for the fee-setting
model. While buyer surplus is still more likely to rise than fall when both buyer and seller travel
costs fall, Figure 4 shows that cases where buyer surplus falls are relatively common when buyer
travel cost is already low under the price-setting model, and when seller travel cost is already low
under the fee-setting model; when both sides’ travel costs are already low, this reversal (buyers
being hurt as platform switching becomes easier) occur in about 20% of parametrizations tested.
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Figure 4: Prevalence of Buyer Surplus Falling when T and t Both Fall

Panel A. Price-Setting Model Panel B. Fee-Setting Model

For each value of t and T , we vary M ∈ {0.5, 1, 2}, θ ∈ {0.1, 0.5, 1, 2}, and γ ∈ {0.1, 0.5, 1, 2}; a darker cell represents
a higher fraction of these parameterizations where buyer surplus falls when buyer and seller travel costs are both
reduced by 0.05. Panel A presents the results for the price-setting model, Panel B for the fee-setting model.

6 Conclusion

In this paper, we have examined the theoretical implications of policies that aim to facilitate cross-
platform participation in digital markets. By developing a model that captures key aspects of
platform competition—horizontal differentiation, transaction-by-transaction platform choice, and
different pricing mechanisms—we have shown that the effects of reducing barriers to platform
switching vary significantly depending on specific features of the market. While policies that re-
duce transportation costs for buyers or sellers generally increase consumer welfare in competitive
settings, these same policies can have ambiguous or even negative welfare effects when platforms
collude. This reversal is particularly pronounced in the price-setting model, where reducing seller
travel costs under collusion leads to dramatically lower buyer and seller surplus, in stark contrast to
the competitive case. Our findings suggest that policymakers should exercise caution when imple-
menting interventions designed to facilitate platform switching: effective policy design may require
not only assessing the likelihood of platform collusion but also understanding the specific business
models employed by platforms in the targeted market.
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Appendix – Proofs

Some mechanical calculations omitted here are given in full in a separate supplemental appendix.

A.1 Proof of Proposition 1

We want PD1 = P to be a local best-response to PD2 = P . Differentiating Π1 with respect to PD1
gives

dΠ1

dPD1
= α′

(
PD1 − θ(P

D
1 )2 − α

βγM
(1− θPD1 )2

)

+α

(
1− 2θPD1 −

α′

βγM
(1− θPD1 )2 +

αβ′

β2γM
(1− θPD1 )2 + 2θ

α

βγM
(1− θPD1 )

)

where α′ and β′ refer to ∂α

∂P
D
1

and ∂β

∂P
D
1

, respectively. Since we’re looking for symmetric equilibrium,

we’re only concerned with the value of dΠ1/dP
D
1 at PD1 = PD2 and therefore α = β = 1

2 , in which
case this simplifies to

dΠ1

dPD1

∣∣∣∣∣
P
D
1 =P

D
2 =P

D

= α′
(
PD − θ(PD)2 − 1

γM
(1− θPD)2

)

+
1

2

(
1− 2θPD − α′

1
2γM

(1− θPD)2 +
β′

1
2γM

(1− θPD)2 + 2θ
1

γM
(1− θPD)

)

Differentiating α gives

α =
1

2
+

1

4tθ

[
(1− θPD1 )2 − (1− θPD2 )2

]
−→ α′ = − 2θ

4tθ
(1− θPD1 ) = − 1

2t
(1− θPD1 )

Calculating β′ takes more work: if we totally differentiate with respect to PD1 ,

β′ =
γ

4T

[
2

(
α

βγM
(1− θPD1 )

)(
α′

βγM
(1− θPD1 )− αβ′

β2γM
(1− θPD1 )− θ α

βγM

)

−2

(
1− α

(1− β)γM
(1− θPD2 )

)(
−α′

(1− β)γM
(1− θPD2 ) +

(1− α)β′

(1− β)2γM
(1− θPD2 )

)]
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Plugging in PD1 = PD2 and α = β = 1
2 and simplifying gives

β′
∣∣
P
D
1 =P

D
2

=
4α′(1− θPD)2 − θ(1− θPD)

2TγM2 + 4(1− θPD)2

Plugging α′ and β′ into dΠ1/dP
D
1 at PD1 = PD2 = PD and simplifying gives

dΠ1

dPD1

∣∣∣∣∣
P
D
1 =P

D
2 =P

D

=

(
− 1

2t
(1− θPD)

)(
PD(1− θ(PD))− 1

γM
(1− θPD)2

)

+
1

2
− θPD +

1

γM

(
TγM

2

t − θ
)

(1− θPD1 )

2TγM2 + 4(1− θPD)2
(1− θPD)2 + θ

1

γM
(1− θPD)

Setting this equal to 0 and multiplying by 2tγM gives

tγMθPD = −γMPD(1− θPD)2 + (1− θPD)3 + tγM(1− θPD) + 2tθ(1− θPD)

+
TγM2 − tθ

TγM2 + 2(1− θPD)2
(1− θPD)3

proving the proposition. 2

A.2 Proof of Proposition 2

Prices PD1 = PD2 = PD lead to equal market shares α = β = 1
2 and, by market clearing, PS =

Ni
Miγ

(1− θPD) = 1
γM (1− θPD) at each platform. Each platform would then earn

Πi(·) = Qi(P
D − PS) =

1

2
(1− θPD)

(
PD − 1

γM
(1− θPD)

)
Maximizing this gives

PD =
2θ + γM

2θ(γM + θ)

Plugging this into the expression for revenue and simpifying gives

Πc =
1

2γM

(
γM

2(γM + θ)

)(
γM

2θ

)
=

γM

8θ(γM + θ)

completing the proof. 2
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A.3 Proof of Proposition 3

We again begin with platform 1’s revenue, which in the fee-setting game is

Π1 = f1βMγ
α2(1− f1)

(αθ + βMγ(1− f1))
2

If we take the log and then differentiate with respect to f1,

d log Π1

df1
=

1

f1
+
β′

β
+ 2

α′

α
− 1

1− f1
− 2

α′θ + β′Mγ(1− f1)− βMγ

αθ + βMγ(1− f1)

Totally differentiating the expression for α with respect to f1, then plugging in f1 = f2 = f and
α = β = 1

2 and simplifying, gives

2tθα′ =

(
Mγ(1− f)

θ +Mγ(1− f)

)(
− 4α′θ

θ +Mγ(1− f)
+
θ(4α′θ + 4β′Mγ(1− f)−Mγ)

(θ +Mγ(1− f))2

)

where now α′ and β′ refer to ∂α/∂f1 and ∂β/∂f1; further manipulation lets us rewrite this as

M2γ2(1− f) = −
[
4M2γ2(1− f)2 + 2t(θ +Mγ(1− f))3

]
α′ +

[
4M2γ2(1− f)2

]
β′ (3)

Similarly, totally differentiating the expression for β, plugging in f1 = f2 = f and α = β = 1
2 , and

simplifying leads to

β′ =
γ

2T

(
1− f

θ +Mγ(1− f)

)(
4α′(1− f)− 1

θ +Mγ(1− f)
− (1− f)(4α′θ + 4β′Mγ(1− f)−Mγ)

(θ +Mγ(1− f))2

)

which simplifies further to

θγ(1− f) =
[
4Mγ2(1− f)3

]
α′ −

[
4Mγ2(1− f)3 + 2T (θ +Mγ(1− f))3

]
β′ (4)

Flipping signs, we can write equations (3) and (4) as

Q

[
α′

β′

]
=

[
−M2γ2(1− f)

−θγ(1− f)

]

where

Q =

 4M2γ2(1− f)2 + 2t(θ +Mγ(1− f))3 −4M2γ2(1− f)2

−4Mγ2(1− f)3 4Mγ2(1− f)3 + 2T (θ +Mγ(1− f))3


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Letting z = (θ +Mγ(1− f)), note that

|Q| =
(

4M2γ2(1− f)2 + 2tz3
)(

4Mγ2(1− f)3 + 2Tz3
)
−
(
−4M2γ2(1− f)2

)(
−4Mγ2(1− f)3

)
= 8M2Tγ2(1− f)2z3 + 8Mtγ2(1− f)3z3 + 4tTz6 > 0

so Q is invertible, and therefore[
α′

β′

]
= Q−1

[
−M2γ2(1− f)

−θγ(1− f)

]

Returning to our first-order condition from before, plugging in f1 = f2 = f and α = β = 1
2 and

simplifying gives

0 =
1

f
− 1

1− f
+

[
4Mγ(1− f)

θ +Mγ(1− f)

2θ − 2Mγ(1− f)

θ +Mγ(1− f)

][
α′

β′

]
+

2Mγ

θ +Mγ(1− f)

=
1

f
− 1

1− f
+

[
4Mγ(1− f)

θ +Mγ(1− f)

2θ − 2Mγ(1− f)

θ +Mγ(1− f)

]
Q−1

[
−M2γ2(1− f)

−θγ(1− f)

]
+

2Mγ

θ +Mγ(1− f)

concluding the proof. 2

A.4 Proof of Proposition 4

If the two platforms colluded by setting identical fee levels f1 = f2 = f , this would lead to equal
market shares α = β = 1

2 and a buyer price

PD =
Ni

Niθ +Miγ(1− fi)
=

1

θ +Mγ(1− f)

at each platform. Demand at each platform would be

Qi = MiγP
S
i =

1

2
Mγ

1− f
θ +Mγ(1− f)

giving each platform revenue of

Πi = QifiP
D
i =

1

2

Mγf(1− f)

(θ +Mγ(1− f))2

Taking the log and dropping the additive constants, maximizing

log f + log(1− f)− 2 log(θ +Mγ(1− f))
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gives the first-order condition

1

f
− 1

1− f
+

2Mγ

θ +Mγ(1− f)
= 0

which simplifies to

f =
θ +Mγ

2θ +Mγ

Along with equal market shares, this implies a buyer price

PD =
1

θ +Mγ
(

1− θ+Mγ
2θ+Mγ

) =
2θ +Mγ

θ(2θ +Mγ) +Mγ (2θ +Mγ − (θ +Mγ))
=

2θ + γM

2θ(θ + γM)

and seller price

PS = (1− f)PD =

(
1− θ +Mγ

2θ +Mγ

)
2θ + γM

2θ(θ + γM)
=

1

2(θ + γM)

which are the same as the collusive outcome in the price-setting game, and therefore lead to the
same level of profits. 2
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Supplemental Appendix to “Platform Switching Policies under Col-
lusion”

S.1 Proof of Proposition 1

We focus on finding a condition on P for PD1 = P to be a local best-response to PD2 = P . Differ-
entiating Π1 with respect to PD1 gives

Π1 = α

(
PD1 − θ(P

D
1 )2 − α

βγM
(1− θPD1 )2

)
↓

dΠ1
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)
where α′ and β′ refer to ∂α

∂P
D
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and ∂β

∂P
D
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, respectively. Since we’re looking for symmetric equilibrium,

we’re only concerned with the value of dΠ1/dP
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1 at PD1 = PD2 and therefore α = β = 1

2 , in which
case this simplifies to
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Differentiating α gives
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]
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Calculating β′ takes more work: if we totally differentiate with respect to PD1 ,
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Plugging in PD1 = PD2 and α = β = 1
2 , this simplifies to

β′ =
γ

4T

[
2

(
1

γM
(1− θPD)

)(
2
α′

1
2γM

(1− θPD)− 2
β′

1
2γM

(1− θPD)− θ 1

γM

)]

2TγM2β′ = 4α′(1− θPD)2 − 4β′(1− θPD)2 − θ(1− θPD)

β′
∣∣
P
D
1 =P

D
2

=
4α′(1− θPD)2 − θ(1− θPD)

2TγM2 + 4(1− θPD)2

and, since we actually care about β′ − α′,

(β′ − α′)
∣∣
P
D
1 =P

D
2

=
4α′(1− θPD)2 − θ(1− θPD)

2TγM2 + 4(1− θPD)2
− α′

=
−2TγM2α′ − θ(1− θPD)

2TγM2 + 4(1− θPD)2
=

(
TγM

2

t − θ
)

(1− θPD1 )

2TγM2 + 4(1− θPD)2

Returning to our original problem to plug in α′ and β′,

dΠ1

dPD1

∣∣∣∣∣
P
D
1 =P

D
2 =P

D

= α′
(
PD(1− θ(PD))− 1

γM
(1− θPD)2

)

+
1

2
− θPD +

β′ − α′

γM
(1− θPD)2 + θ

1

γM
(1− θPD)

=

(
− 1

2t
(1− θPD)

)(
PD(1− θ(PD))− 1

γM
(1− θPD)2

)

+
1

2
− θPD +

1

γM

(
TγM

2

t − θ
)

(1− θPD1 )

2TγM2 + 4(1− θPD)2
(1− θPD)2 + θ

1

γM
(1− θPD)

Setting this equal to 0 and multiplying by 2tγM gives

tγMθPD = −γMPD(1− θPD)2 + (1− θPD)3 + tγM(1− θPD) + 2tθ(1− θPD)

+
TγM2 − tθ

TγM2 + 2(1− θPD)2
(1− θPD)3

proving the proposition. 2
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S.2 Proof of Proposition 2

Prices PD1 = PD2 = PD lead to equal market shares α = β = 1
2 and, by market clearing, PS =

Ni
Miγ

(1− θPD) = 1
γM (1− θPD) at each platform. Each platform would then earn

Πi(·) = Qi(P
D − PS) =

1

2
(1− θPD)

(
PD − 1

γM
(1− θPD)

)

=
1

2γM
(1− θPD)

(
(γM + θ)PD − 1

)
Maximizing this gives first-order condition

0 = −θ
(

(γM + θ)PD − 1
)

+ (γM + θ)(1− θPD)

PD (θ(γM + θ) + θ(γM + θ)) = θ + γM + θ

PD =
2θ + γM

2θ(γM + θ)

Plugging this into the expression for revenue gives

Πc =
1

2γM

(
1− θ 2θ + γM

2θ(γM + θ)

)(
(γM + θ)

2θ + γM

2θ(γM + θ)
− 1

)

=
1

2γM

(
γM

2(γM + θ)

)(
γM

2θ

)
=

γM

8θ(γM + θ)

completing the proof. 2

S.3 Proof of Proposition 3

We again begin with platform 1’s revenue, which in the fee-setting game is

Π1 = f1βMγ
α2(1− f1)

(αθ + βMγ(1− f1))
2

If we take the log and then differentiate with respect to f1,

log Π1 = log f1 + log β + logM + log γ + 2 logα+ log(1− f1)− 2 log(αθ + βMγ(1− f1))
↓

d log Π1

df1
=

1

f1
+
β′

β
+ 2

α′

α
− 1

1− f1
− 2

α′θ + β′Mγ(1− f1)− βMγ

αθ + βMγ(1− f1)
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Totally differentiating the expression for α with respect to f1,

α =
1

2
+

1

4tθ

[(
1− αθ

αθ + βMγ(1− f1)

)2

−
(

1− (1− α)θ

(1− α)θ + (1− β)Mγ(1− f2)

)2
]

↓

α′ =
2

4tθ

(
1− αθ

αθ + βMγ(1− f1)

)(
− α′θ

αθ + βMγ(1− f1)
+
αθ(α′θ + β′Mγ(1− f1)− βMγ)

(αθ + βMγ(1− f1))
2

)

− 2

4tθ

(
1− (1− α)θ

(1− α)θ + (1− β)Mγ(1− f2)

)
(

α′θ

(1− α)θ + (1− β)Mγ(1− f2)
+

(1− α)θ(−α′θ − β′Mγ(1− f2))
((1− α)θ + (1− β)Mγ(1− f2))

2

)

where now α′ and β′ refer to ∂α/∂f1 and ∂β/∂f1. Plugging in f1 = f2 = f and therefore α = β = 1
2 ,

this simplifies to

2tθα′ =

(
1− θ

θ +Mγ(1− f)

)(
− 2α′θ

θ +Mγ(1− f)
+
θ(2α′θ + 2β′Mγ(1− f)−Mγ)

(θ +Mγ(1− f))2

)

−
(

1− θ

θ +Mγ(1− f)

)(
2α′θ

θ +Mγ(1− f)
+
θ(−2α′θ − 2β′Mγ(1− f))

(θ +Mγ(1− f))2

)

=

(
Mγ(1− f)

θ +Mγ(1− f)

)(
− 4α′θ

θ +Mγ(1− f)
+
θ(4α′θ + 4β′Mγ(1− f)−Mγ)

(θ +Mγ(1− f))2

)

and, from there,

(θ +Mγ(1− f))32tθα′ = Mγ(1− f)
(
−4α′θ(θ +Mγ(1− f)) + θ(4α′θ + 4β′Mγ(1− f)−Mγ)

)
(θ +Mγ(1− f))32tθα′ = Mγ(1− f)

(
−4α′θMγ(1− f) + 4β′θMγ(1− f)−Mγθ

)
(θ +Mγ(1− f))32tα′ = −4α′M2γ2(1− f)(1− f) + 4β′M2γ2(1− f)(1− f)−M2γ2(1− f)

M2γ2(1− f) = −
[
4M2γ2(1− f)2 + 2t(θ +Mγ(1− f))3

]
α′ +

[
4M2γ2(1− f)2

]
β′
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Similarly, totally differentiating the expression for β gives

β =
1

2
+

γ

4T

[(
α(1− f1)

αθ + βMγ(1− f1)

)2

−
(

(1− α)(1− f2)
(1− α)θ + (1− β)Mγ(1− f2)

)2
]

↓

β′ =
2γ

4T

(
α(1− f1)

αθ + βMγ(1− f1)

)(
α′(1− f1)− α

αθ + βMγ(1− f1)
− α(1− f1)(α

′θ + β′Mγ(1− f1)− βMγ)

(αθ + βMγ(1− f1))
2

)

− 2γ

4T

(
(1− α)(1− f2)

(1− α)θ + (1− β)Mγ(1− f2)

)
(

−α′(1− f2)
(1− α)θ + (1− β)Mγ(1− f2)

−
(1− α)(1− f2)

(
−α′θ − β′Mγ(1− f2)

)
((1− α)θ + (1− β)Mγ(1− f2))

2

)

Again plugging in f1 = f2 = f and α = β = 1
2 , this becomes

β′ =
γ

2T

(
1− f

θ +Mγ(1− f)

)(
2α′(1− f)− 1

θ +Mγ(1− f)
− (1− f)(2α′θ + 2β′Mγ(1− f)−Mγ)

(θ +Mγ(1− f))2

)

+
γ

2T

(
1− f

θ +Mγ(1− f)

)(
2α′(1− f)

θ +Mγ(1− f)
−

(1− f)
(
2α′θ + 2β′Mγ(1− f)

)
(θ +Mγ(1− f))2

)

β′ =
γ

2T

(
1− f

θ +Mγ(1− f)

)(
4α′(1− f)− 1

θ +Mγ(1− f)
− (1− f)(4α′θ + 4β′Mγ(1− f)−Mγ)

(θ +Mγ(1− f))2

)

whence

2T (θ +Mγ(1− f))3

γ(1− f)
β′ = (4α′(1− f)− 1)(θ +Mγ(1− f))− (1− f)(4α′θ + 4β′Mγ(1− f)−Mγ)

2T (θ +Mγ(1− f))3

γ(1− f)
β′ = −θ + 4Mα′γ(1− f)2 − 4β′Mγ(1− f)2

θγ(1− f) =
[
4Mγ2(1− f)3

]
α′ −

[
4Mγ2(1− f)3 + 2T (θ +Mγ(1− f))3

]
β′

Flipping signs, we can write the two expressions[
4M2γ2(1− f)2 + 2t(θ +Mγ(1− f))3

]
α′ +

[
−4M2γ2(1− f)2

]
β′ = −M2γ2(1− f)

[
−4Mγ2(1− f)3

]
α′ +

[
4Mγ2(1− f)3 + 2T (θ +Mγ(1− f))3

]
β′ = −θγ(1− f)

as [
A B
C D

] [
α′

β′

]
=

[
E
F

]
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where

A = 4M2γ2(1− f)2 + 2t(θ +Mγ(1− f))3, B = −4M2γ2(1− f)2

C = −4Mγ2(1− f)3, D = 4Mγ2(1− f)3 + 2T (θ +Mγ(1− f))3

E = −M2γ2(1− f), F = −θγ(1− f)

Letting z = (θ +Mγ(1− f)), note that∣∣∣∣[ A B
C D

]∣∣∣∣ =
(

4M2γ2(1− f)2 + 2tz3
)(

4Mγ2(1− f)3 + 2Tz3
)
−
(
−4M2γ2(1− f)2

)(
−4Mγ2(1− f)3

)
= 16M3γ4(1− f)5 + 4M2γ2(1− f)22Tz3 + 4Mγ2(1− f)32tz3 + 4tTz6 − 16M3γ4(1− f)5

= 8M2Tγ2(1− f)2z3 + 8Mtγ2(1− f)3z3 + 4tTz6 > 0

so
[
A B
C D

]
is invertible, and we therefore have

[
α′

β′

]
=

[
A B
C D

]−1 [
E
F

]
Going back to our FOC, and setting f1 = f2 = f and α = β = 1

2 , we have

0 =
1

f
− 1

1− f
+ 2β′ + 4α′ − 2

2α′θ + 2β′Mγ(1− f)−Mγ

θ +Mγ(1− f)

=
1

f
− 1

1− f
+ 4α′ − 4α′θ

θ +Mγ(1− f)
+ 2β′ − 4β′Mγ(1− f)

θ +Mγ(1− f)
+

2Mγ

θ +Mγ(1− f)

=
1

f
− 1

1− f
+

4Mγ(1− f)

θ +Mγ(1− f)
α′ +

2θ − 2Mγ(1− f)

θ +Mγ(1− f)
β′ +

2Mγ

θ +Mγ(1− f)

=
1

f
− 1

1− f
+

[
4Mγ(1− f)

θ +Mγ(1− f)

2θ − 2Mγ(1− f)

θ +Mγ(1− f)

] [
α′

β′

]
+

2Mγ

θ +Mγ(1− f)

=
1

f
− 1

1− f
+

[
4Mγ(1− f)

θ +Mγ(1− f)

2θ − 2Mγ(1− f)

θ +Mγ(1− f)

] [
A B
C D

]−1 [
E
F

]
+

2Mγ

θ +Mγ(1− f)

concluding the proof. 2

S.4 Proof of Proposition 4

If the two platforms colluded by setting identical fee levels f1 = f2 = f , this would lead to equal
market shares α = β = 1

2 and a buyer price

PD =
Ni

Niθ +Miγ(1− fi)
=

1

θ +Mγ(1− f)
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at each platform. Demand at each platform would be

Qi = MiγP
S
i =

1

2
Mγ

1− f
θ +Mγ(1− f)

giving each platform revenue of

Πi = QifiP
D
i =

1

2

Mγf(1− f)

(θ +Mγ(1− f))2

Taking the log and dropping the additive constants, maximizing

log f + log(1− f)− 2 log(θ +Mγ(1− f))

gives the first-order condition

0 =
1

f
− 1

1− f
+

2Mγ

θ +Mγ(1− f)

0 = (1− f)(θ +Mγ(1− f))− f(θ +Mγ(1− f)) + 2Mγf(1− f)

0 = θ(1− 2f) +Mγ(1− f)(1− 2f) + 2Mγf − 2Mγf2

0 = θ − 2θf +Mγ − 3Mγf + 2Mγf2 + 2Mγf − 2Mγf2

0 = θ − 2θf +Mγ −Mγf

f =
θ +Mγ

2θ +Mγ

Along with equal market shares, this implies a buyer price

PD =
1

θ +Mγ
(

1− θ+Mγ
2θ+Mγ

) =
2θ +Mγ

θ(2θ +Mγ) +Mγ (2θ +Mγ − (θ +Mγ))
=

2θ + γM

2θ(θ + γM)

and seller price

PS = (1− f)PD =

(
1− θ +Mγ

2θ +Mγ

)
2θ + γM

2θ(θ + γM)
=

1

2(θ + γM)

which are the same as the collusive outcome in the price-setting game, and therefore lead to the
same level of profits. 2
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